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Winner-Takes-All Dynamics and Antiphase States in Modulated Multimode Lasers
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(N —I )!coexisting antiphase states are predicted to appear in an N-mode laser when the pump power
drops below the threshold during part of the modulation cycle. The total output exhibits the so-called
spiking mode pulsations at a frequency ~, However, each longitudinal-mode output shows pulses at a
frequency ro, /N, with each oscillator shifted by 2z/ro, from its neighbor, resulting from a "winner-takes-
all dynamics. The assignment to antiphase states embedded in a high-dimensional phase space by injec-
tion seeding is shown. Applicability to a rewritable memory of (N 1)!d—ifferent "dynamical patterns"
is demonstrated on the basis of numerical simulations.

PACS numbers: 42.50.Tj, 02.90.+p, 05.45.+b

The issue of intensity Auctuation in the output of lasers
was initiated by the pioneering work of McCumber [1].
His linear-response theory predicted a noise peak in

power spectra corresponding to the relaxation oscillations
in class-B lasers, in which polarization dynamics can be
adiabatically eliminated. Such a frequency response was
confirmed in semiconductor lasers [2] and solid-state
lasers with a small periodic perturbation [3,4]. In the
case of deep modulations of class-8 lasers, the amplitude
fluctuation changes drastically [51. Klische, Telle, and
%'eiss demonstrated the period-doubling transition to
chaotic relaxation oscillations in a deeply modulated
NdP&O]4 solid-state laser in a modulation frequency re-
gime near the relaxation frequency [61. On the other
hand, Kubodera and Otsuka investigated precisely the
response of laser-diode-pumped LiNdP40i2 (LNP) lasers
to a deep sinusoidal modulation of the pump intensity [4].
They found that periodic pulse oscillations (spiking
mode) occur in a wide modulation frequency regime be-
1ow the relaxation oscillation frequency whenever the
pump power drops below the threshold during part of the
cycle [4]. They also observed alternative spiking oscilla-
tions resulting from the cross-saturation eA'ect in a deeply
pump-modulated orthogonally dual-polarized LNP laser
and reproduced the experiment surprisingly well on the
basis of Tang-Statz-deMars's multimode rate equation
model, which incorporates the spatial hole-burning elfect
[7]. In their observation, each lasing mode exhibits alter-
native pulse trains at every other modulation cycle of the
spiking mode frequency.

Similar problems featuring the interaction between de-
grees of freedom have been investigated in several non-
linear systems [8,9]. Wiesenfeld er al. recently observed
the so-called antiphase state, which was first predicted for
Josephson-junction arrays [10], in intracavity second-
harmonic generation in a multimode yttrium-aluminum-
garnet laser [11]. Such a state is periodic in time, with
each lasing mode having the same wave form. However,
each oscillator is shifted by I//V of a period from
its neighbor, i.e. , Ik(r) =lp(t+Tk/1V), k =1,2, . . . , N,
~here Io is a wave form of period T. This implies the
simultaneous existence of (N —1)!attractors in the phase

+eknp+s; kj, k =1,2, . . . , N, (3)

where r =T/r is the normalized time (r is the population
lifetime), w is the pump power normalized by the first
lasing mode threshold, no is the constant term of the spa-
tial Fourier expansion of the population inversion density
due to spatial hole burning normalized by the first lasing
mode threshold, nk is the first-order Fourier component
of population inversion density for the kth mode, sk is the
normalized photon density, I ~ k is the emission cross-

space. Therefore, such systems which possess antiphase
states are fascinating candidates for investigating com-
plex dynamics involving an extremely large number of
coexisting at tractors.

The alternative spiking pulsation of Kubodera and Ot-
suka [4] strongly suggests the simplest (l, l) antiphase
state [111. This raises the question, "What kind of spik
ing oscillation takes place ~hen the oscillating mode
number /V increases'" If /V alternative spiking states, or
rather antiphase states, do exist in deeply modulated %-
mode lasers, such a system wi11 provide another example
for investigating the dynamics of coexisting attractor sys-
tems.

With this motivation, in this Letter we investigate the
response of class-8 multimode lasers to a deep sinusoidal
pump modulation theoretically, paying special attention
to an interplay between lasing modes. As normalized
multimode rate equations [12], the following coupled N
mode equations are obtained [4,7]. These equations
are universally applicable to homogeneously broadened
class-8 lasers with spatial hole burning and may be
modified to include globally coupled laser arrays. Indeed,
almost all solid-state lasers belong to this category, since
the spatial diA'usion of population is slow enough to
create spatial holes:

JV

dnp/dr =w —nii —g rg k(nii —nk/2)sk,
k=1

W

dnk/dr =f'g krlpgk leak 1+ g I g ksk
k=1

dsk/dt =K[[I g k (np —nk/2) —I I k]sk
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section (gain) ratio to the first lasing mode, I t t, is the
loss ratio to the first lasing mode, K=z/z~ (z~ is the
photon lifetime), and et, is the spontaneous emission rate
for the kth mode. Here, s; I, is an "injection-seed" signal,
which will be discussed later. Note that each lasing mode
globally couples with all other modes through cross satu-
ration of population inversion.

In the following analysis, we assume for brevity that
the gain spectrum is wide enough as compared with longi-
tudinal mode spacing, and the gain, loss, and spontaneous
emission rate are the same for all modes. The following
results are generally obtained if eff'ective gains are the
same for all lasing modes, i.e., I g k =I t t. [13].

An N mod-e free-running laser is always stable in time
and the relaxation oscillations are damped out. The re-
laxation oscillation frequency for N-mode free-running
lasers coincides with that of a single-mode laser, which is
derived from the linear stability analysis as [12]

co, = [(-', np n()si/zz~—] '/'.

Here, no, n~, and s[ are the stationary values for N=1.
This is exactly the same value as co„=[(w—1)/zz~] '/,
which is obtained from McCumber's linearized theory
[ll.

For a small modulation depth, i.e., wp ) 1 and
Aw((wp 1 in w(t) =wp+tttwcos(zco t), only resonant

relaxation oscillations [4] are observed around co =co„
If modulation depth increases such that the pump power

drops below the threshold during part of the cycle (i.e.,

hw ) wp 1), the sPiking mode oscillations, which aP-
pear as a repetitive generation of the first peak in the on-

set of relaxation oscillations, take place in a wide region
below the relaxation oscillation frequency co„. The lowest
repetition frequency edge of the spiking mode (optimum
spiking mode frequency), at which the highest peak
power is obtained, is given by [4]

co, ,z, =tt [21n(2eJK ) ] /

x [(wp —1)/(w —1)] '/ co„,

according to Carlson's procedure [14], where w =wp
+ (2/z)d, w denotes the pulse height of an equivalent rec-
tangular pump pulse [4]. The observed spiking mode fre-
quency in a diode-pumped LNP laser coincided satisfac-
torily with Eq. (5); furthermore, alternative spiking mode
oscillations for N=2 dual-polarization oscillations were
reproduced surprisingly well by the numerical simulation
of Eqs. (1)-(3) [4].

When initial conditions for all the lasing modes are ex-
actly the same, the highest peak-power spiking mode
takes place at the frequency co, ,~t given by Eq. (5). In
this case, each lasing mode produces synchronized spik-
ing output. Needless to say, however, such a synchro-
nized spiking mode can never be realized in the real ex-
periment. Indeed, if one introduces an extremely small
perturbation to initial conditions, synchronization fails
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I"IG. 1. Compoter analysis for IV=2 alternative spiking os-
cillations.

and each mode exhibits separate spiking pulsations. The
simplest example for N =2 is shown in Fig. 1, where w 0
=2.7, h, m=2, It: =10, and a=1.2&10 are assumed
[4]. Note that each mode alternatively produces periodic
spikes at the frequency 2 co, and the total output exhibits
the spiking mode at the frequency of m, .

The mechanism of the alternative spike pulse oscilla-
tion can be explained as follows. The time delay for the
spike mode is given by the buildup time of the population
inversion np —nt, /2 to reach the threshold value, plus the
growth time of the photon density sI, after the population
density exceeds the threshold. For the first pump cycle in

Fig. 1, the first mode k =1 reaches the threshold first, and
the second mode oscillation is suppressed due to the cross
saturation, i.e., quenching. On the other hand, the step-
wise decrease in np —ni/2 resulting from the self-satu-
ration, just after the oscillation of s[, is more significant
than that in np —n2/2. Thus, the recovery time of the
population inversion to its threshold value is shorter for
the second mode than for the first mode, and the second
mode (s2) oscillation builds up and suppresses the first
mode during the next pump cycle. (It should be noted
that the pulse height is lower than for the N=1 case re-
sulting from the cross-saturation eff'ect. This results in an
increase in the optimum spiking mode frequency for anti-
phase states. In general, the optimum spiking mode fre-
quency increases as N increases. )

Do such alternative spiking pulsations take place for
larger N values? As for small N, the alternative spiking
mode is indeed excited. In short, the total output exhibits
spiking mode oscillations at the frequency of m, and each
oscillator produces N alternative pulses at the frequency
of co, /N. An example for N=3 is shown in Fig. 2(c).
This is nothing more than the antiphase state. The anti-
phase states are globally attracting and are observed for
arbitrary initial conditions. There coexist (N —1)i anti-
phase periodic attractors in the phase space. Which anti-
phase state is attained depends on the initial conditions.
For modulation below the optimum spiking frequency
[i.e. , region 2 in Fig. 2(a)], chaotic spiking oscillations
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FIG. 2. (a) Typical frequency response diagram. %=3,
wp =3, K =10, t.'=1.2x 10, and h.w =2.3 are assumed. Such
a scenario always exists independently of %. (b) Chaotic spik-

ing oscillation in region A. rto, =30. (c) Antiphase spiking
mode oscillation in region B. rco„, =32. (d) Alternative pulsa-

tion of spiking mode and resonant relaxation oscillation in re-

gion C. re, =50. The so-called clustering [g] is occurring in

this region.

occur as shown in Fig. 2(b). As cu increases up to re-
gion C, various attractors such as suggested by the wave
forms in Fig. 2(d) tend to coexist with antiphase spiking
states. (The total output wave form for this particular at-
tractor well corresponds to the alternative spike pulses of
the spiking mode and the resonant relaxation oscillation
which was observed in the Kubodera-Otsuka experiment
[4].) However, these attractors have narrow basins of at-
traction and the system is predominantly attracted to the
antiphase states. As co increases further, synchronized
sustained resonant relaxation oscillations are excited in

region D. A quite similar frequency response, featuring
2, 8, C, and D regions, was obtained experimentally in
the single-mode laser [see Fig. 2(a) in Ref. [4]].

When N increases with a decrease in mode spacing, the
basins of attraction of antiphase states become increas-
ingly close packed ("attractor crowding" [15])and shrink
rapidly. In the present system, consequent to the shrink-
age of the basins of attraction of antiphase states, regions
C and D in Fig. 2(a) spread and other attractors like
those in Fig. 2(d), as well as resonant relaxation oscilla-

FIG. 3. Assignment to desired antiphase states by "seeding. "
%=5, wp=3, h, w=2. 3, and T:co„,=45. Seed pulse intensity:
s; i =0.2 [= (laser pulse height)/60]; pulse width: tit =0.06.
(a) With seeding and (b) without seeding.

tions, which have increased basins of attraction, tend to
coexist with the antiphase states with multiplicity. Con-
sequently, antiphase states can rarely be attained for
arbitrary initial conditions. Furthermore, the lower the
symmetry, i.e., I g k &I

& I„ the greater the multiplicity.
However, if the system size is not extremely large, such

multiplicity can be overcome by the following "seeding"
method and one can assign the system to desired anti-
phase states. Inject light pulses to N —1 modes in the
desired sequences as seeds at the time interval of 2tr/cu,

only during the N —1 modulation cycle. Then, the seeded
mode builds up first and other modes are quenched simi-
larly to Fig. 1 (winner takes all dyn-amics -[16]). The
desired dynamic "firing" pattern then persists, repeating
with the time interval of 2Nrr/to, . The result is shown in

Fig. 3(a) for N=S, where seed light pulses are injected to
lasing modes oscillating at frequencies Aj„with the se-
quence 0 l Az A3 A4 in region a, and Q4 03

0 5 0 2 in region b. Even for N =5, 24 antiphase
states coexist, together with other attractors. However,
with seeding, the desired antiphase state possessing the
same dynamic firing pattern as the seed, repeating at the
period 2ntr/co, indicated by the brackets at the top of the
figure, is successfully excited, and even switching (see re-
gion b) is possible. In other words, dynamic memory em-
bedded in a high-dimensional phase space is recalled by
the triggering seed. The seeding condition for realizing
antiphase states in terms of pulse height and pulse width
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is not so severe. Without seeding under the same initial
conditions as Fig. 3(a), chaotic motion persists and the
system can hardly find antiphase attractors, as shown in
Fig. 3(b). From the applications point of view, the
present seeding experiment implies that the present anti-
phase states can be utilized, in principle, to perform
rewritable memory operations on (N —I )!different "dy-
namic patterns. " Similar dynamic memory operations
employing seeding methods have been reported in dif-
ferent contexts [16,17].

When N increases further, however, extraordinary
multiplicity might possibly result in the noise-induced es-
cape from antiphase attractors [15]. Another interesting
question arises as to whether the self-induced switching-
path formation (chaotic itinerancy [18]) among destabi-
lized patterns occurs in the present system for a large-N
limit. The quantitive evaluation of basins of attraction of
coexisting at tractors, phase-space landscape featuring
connectivities between antiphase states, and sensitivity to
external noise would be a future problem for understand-
ing the complex dynamics involving an extraordinarily
large number of coexisting antiphase states.
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