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Mixed-Symmetry 2+ State of Fe in Realistic Shell Model
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The mixed-symmetry 2+ state of Fe is investigated by a large-scale shell-model calculation. We can
reproduce the experimental energy levels by the Kuo-Brown interaction, as well as the F. 2 and M1 tran-
sition probabilities. The (e,e') form factors are also reproduced by including the core-polarization effect.
By inspecting the shell-model wave functions thus tested, it is found that the 22+ and 24+ states share a
large fraction of the mixed-symmetry component.

PACS numbers: 21.60.Cs, 21.10.Re, 25.30.nh, 27.40.+z

The interacting boson model (IBM) [I] has been suc-
cessful in the description of lowest collective states which

are predominantly symmetric with respect to the proton
and neutron degrees of freedom. On the other hand, in

the proton-neutron interacting boson model (IBM-2)
[2,3], mixed-symmetry states have been predicted at
higher excitation energies. The lowest mixed-symmetry
1+ state corresponds to the scissors mode [4,5]. For vi-

brational nuclei, the mixed-symmetry 2+ state has been
predicted since the IBM-2 was founded [3]. This state is

interpreted as a quadrupole surface oscillation out of
phase between protons and neutrons. Despite some ear-
lier studies [6], the mixed-symmetry 2+ state has not
been confirmed so far. In this Letter we shall search for a
mixed-symmetry 2+ state in Fe by performing a large-
scale shell-model calculation with an interaction derived

from the 6 matrix. The shell-model calculation is re-

quired to yield precise wave functions which are needed

to study the mixed-symmetry 2 state. Fe provides us

with a meeting point of the realistic shell-model calcula-
tion and the quadrupole collectivity; the former has prac-
tical limits for increasing particle number, whereas the
latter appears only in heavier nuclei. Thus Fe gives a
precious testing ground to understand the mixed-sym-

metry states.
Erd et aj. cia&med that the 22+ and 23+ states share the

mixed-symmetry component in Fe, based on the rela-
tively large observed 8(M1) values from these states to
2) [7]. 1iiofeover, Hartung et al. showed tllat tlie (e,e )
form factors can be described consistently with the above
interpretation to a certain extent [8]. The wave functions
used in these studies, however, do not seem to be
suIIIiciently accurate, and indeed cause various difhculties
as will be discussed later. More reliable wave functions
are needed in order to investigate the mixed-symmetry
2 state.

&e study the mixed-symmetry problem of Fe by a
shell-model calculation. Assuming lLa to be a doubly
magic inert core, we consider the following configura-
tions:

(Of.t )" "(Of' tl p i Ip'»)"'. . (1)

where Q~=[r V ]v, with eA'ective charges e„'"=1.4e
and e,' =0.9e. We assume the single-particle wave func-

tions in the harmonic-oscillator potential, with oscillator
length S =~ '~' =1.9&6 fm. The M 1 operator is

]/2

T(MI )=-
[ 4tr

(gt p I p + gq pSv )

where J~ and S~ denote orbital and spin angular momen-

While k=O gives the configuration in which excitation
across W or Z =28 is absent, we shall use the model space
containing all configurations of k =0, 1, and 2. The
description of Fe with only the k=0 configuration [9]
or that with the k=O and 1 configurations [10] fail to
reproduce the properties of the 2+ states higher than 22+.

For instance, the shell-model calculation in Ref. [9]
overestimates the excitation energy of 2&+ by 0.4 MeV
and of 24+ by 0.5 MeV. Therefore, the k=2 configu-
ration is crucial.

As for the effective Hamiltonian, we adopt the Kuo-
Brown Hamiltonian [11]. The single-particle energies
are determined from experimental data of one-particle
states on the top of the Ca core. The two-body interac-
tion is obtained from the 6 matrix derived from the
Hamada- Johnston potential, including three-particle-
one-hole (3p-lh) corrections. Thus there are no adjust-
able parameters in the calculation of energy levels. The
isospin is conserved, and hereafter we restrict ourselves to
the T=2 states.

The experimental and calculated energy levels are
shown in Fig. 1. The experimental spectrum is excellent-
ly reproduced for F., &4 MeV. Discrepancies are typi-
cally around only 0. 1 MeV. The k=0 configuration is

dominant in most of the displayed eigenstates with
(50-60)% probability, but even the ground state contains
as much as 27% k =2 configuration.

The 8(E2) and 8(M1) values are exhibited in Table
I, as well as the F. 2 and M1 moments of the 2]+ state.
%'e use the E2 operator

T(E2)= g e,'g, ,
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TABLE I. Electromagnetic properties of low-lying 2+ states
of Fe: The upper box exhibits 8(E2) values (e fm ), while

the lower box shows 8(M I) (p~, where p~ is nuclear magne-
ton). In the diagonal case, the E2 or M 1 static moment (efm'
or pz) is displayed. Experimental data are taken from Ref.
[12].
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FIG. 1. Energy levels of positive-parity states of ' Fe with

E, &4 MeV.

(+(o)&= g c (v (a')&S(v, (a")&, (5)

turn operators, respectively. Single-particle g factors g~'
geA 0 0 geA' 0 gg free and jef 0 gg free

adopted, where g,"'~" denotes the free nucleon values. The
electromagnetic properties are reproduced well, except
for B(M I;23+ 2~+), which is a noncollective transition
as will be mentioned later. This reproduction of the elec-
tromagnetic properties as well as the energy levels indi-
cates the reliability of the wave functions.

Now we turn to the mixed-symmetry 2 components
in the wave functions. For this purpose we consider 5
and D pairs, which correspond to the s and d bosons in

the IBM [2]. If we assume the N =Z =28 doubly magic
core, Fe has a pair of proton holes and a pair of neutron
valence particles. Within the k =0 configuration in Eq.
(I ), S and D pairs of protons are defined as the 0+ and
2+ states of the (Of7/q) configuration, while those
of neutrons are collective 0+ and 2+ states of the
(Ofs/2lpi/2lp~/2) configuration. The complete set of the
2+ states within the SD space is spanned by

(2+ (SD)& = (IVX)(IS.& ID.&+ ID-& IS.&) ~

(2~+ (D') &
= [(D.& S ID,&]

"'
(2+ (SD)&

= (I/W2) ((S.& (D,&
—ID.& IS.&)

Obviously the first two states correspond to the totally
symmetric states in the IBM-2 after the Otsuka-Arima-
Iachello (OAI) mapping [2], whereas the last corre-
sponds to the mixed-symmetry state. Recently Halse in-

vestigated the wave functions of Ref. [9] from this
viewpoint [13] and found that the 0~+ and 2~+ states are
totally symmetric states to a good approximation, while
22+ has quite a large fraction (—80%) of the mixed-

symmetry state. However, the present wave functions
contain a considerable amount of k &0 conf]gurations.
In order to take this eFect into account, we extend the
SD pair states.

The wave functions of Fe are expanded in terms of
products of proton and neutron wave functions as

2I
22+

2+
24

2+
2I

2I

2I

1.17
0.28
0.00
0.13

1.2 ~ 0.2b

0.23 + 0.07
0.07 ~ 0.01
0.11 ~ 0.05

"'Quadrupole moment. Magnetic moment.

by an optimization procedure described below. The co-
e%cients x; ~ are determined so that the overlap between
the product state (S,) S (S,) and the ground state of Fe
should be maximum. Following this step, x; are deter-
mined by maximizing the overlap between (D„)S (S,) and
the 2~+ state of Fe, while x;, are determined from the
overlap between (S ) S(D,) and 2~+ of Fe. In these op-
timizations we used about twenty (p~(J;+)& bases for each
p (=n, v) and J, confirming the convergence. In the
resultant (S ) ((D,)) state the weight of the (Of7/2)
configuration is 84% (78%), while in the (S,) ((D„)) state
the weight of the (Ofs/21p3/21pl/2) configura«on is 89%
(85%). This procedure would lead to a possible generali-
zation of the OAI mapping [2], by connecting these SD
states to sd boson states.

Table II shows overlaps between the SD product states
and some eigenstates of Fe. The 0] state is an almost
pure SD state. The 2]+ state is primarily in the SD sub-
space, and has almost equal amplitudes for the (S & S (D,)
and (D~&S(S,) components, which is consistent with the
totally symmetric nature. Qn the other hand, the
amounts of (S &S (D,& and (D & S (S,& components in the
22+ state are large and close to each other, but the signs
of the amplitudes are opposite. A similar situation is
found for 24+. Thus the 22+ and 24+ states share the
mixed-symmetry component. It should be emphasized
that about half of the mixed-symmetry component is con-
centrated in these two states, which are around E =3

where the c ~ stand for expansion coe%cients, and the
a's specify the states in each space. The proton [neutron]
basis states (p (a) & [(&p„(a)&l are taken to be eigenstates
of the corresponding single-closed system. By using the
(p~(cT) ) bases, we define the extended SD states
(p =x, v),

ISp&=Zx"'Ivp(0;+)&, (D,)=Ex"'(~,(2 )),
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State

TABLE II. Overlaps between SD states and eigenstates of ' Fe.

SD prob.

0+
2]
2+
2+
2+

0.74
0.55
0.38
0.10
0.27

0.56
—0.35

0.03
—0.26

0.53
0.37

—0.09
—0.09

0.09

83%
74%
27%

2%
15%

MeV. In the other 2+ states with E, & 5 MeV, the ad-
mixture of the mixed-symmetry component is only a few
percent in total. The remaining fraction of the mixed-
symmetry component goes to much higher energy or is

highly fragmented. It is found that the state generated
from (I/J&)(iS ) S iD,) —iD, ) S iS.)) by orthogonaliz-
ing to the 2 states with E„&5 MeV is distributed, with
the centroid at E =10.4 MeV. The present realistic in-
teraction hardly mixes a symmetric state [iD,) S iD,)]
into 22+ or 24+. Namely, the realistic interaction seems to
conserve the F-spin-like symmetry in this nucleus. Thus
the mixed-symmetry 2+ state appears as a basic mode,
and 22+ and 24+ share this mode in ' Fe, contrary to the
previous report in Refs. [7,8]. Note that, although the
SD product states do not necessarily have good isospin,
the leakage out of the T =2 space is only a few percent.

The fragmentation of the mixed-symmetry 2+ com-
ponent into the 2q+ and 24+ states comes from mixing with
states outside the SD space. Because of the mixing, the
matrix elements (22+

i i Q~i i0~+) and (2q+
i igni i0~+) (p

=rr, v) contain SD and non-SD contributions in similar
magnitudes.

The 23+ state is an entirely noncollective state. It is
confirmed that about half of this state is a product of the
S and a neutron noncollective 2+ state.

The J and J, operators, where J~=L~+S~ (p=rr, v),
are alternative devices to discuss the proton-neutron sym-
metry [14]. We obtain results consistent with those of
the SD decomposition.

In order to confirm the conclusions obtained above, we
calculate (e,e') form factors from the ground state to
several 2+ states. The method of Sagawa and Brown
[15] is employed for this calculation. Single-particle
wave functions are obtained by the Hartree-Fock (HF)
method with the SGII Skyrme interaction [16], and iso-
scalar (IS) and isovector (IV) giant quadrupole reso-
nances (GQR) are obtained by the random-phase ap-
proximation (RPA). The core-polarization effect caused
by the GQR is incorporated into the single-particle wave
functions with the mixing amplitudes evaluated in pertur-
bation theory. In this process, we take into account one
IS GQR peak at E =17 MeV, which is completely iso-
lated, and nine typical IV GQR peaks among the many
peaks distributed over E =20-35 MeV. In the RPA and
the perturbative calculation, the residual particle-hole in-
teraction is derived from the SGII interaction, consistent-
ly with the HF calculation. With the renormalized sin-
gle-particle wave functions around the Ni core, the C2

1088

form factors are calculated from the shell-model density
matrices. This calculation again contains no adjustable
parameter. The results are shown in Fig. 2, in compar-
ison with experimental data taken from Refs. [8,17,18],
in which the transverse mode was not separated. The
form factors of the excitation to the 2]+ and 22+ states are
in remarkable agreement. Though there are only few
data points for 24+, we can reproduce the order of magni-
tude of the first peak, which is higher than those of 22+

and 23+, reAecting the collectivity. The difference be-
tween 22+ and 24+ arises from the coupling to degrees of
freedom outside the SD space. The form factor to 2q+ is
not reproduced so well. This could be related to the small
collectivity of the state. It is not so evident if the method
of Sagawa and Brown is applicable to such a noncollec-
tive transition. Note that, in reproducing the form fac-
tors to the 2I+, 22+, and 23+ states, Hartung et al. [8] uti-
lized state-dependent normalization factors (0.2-2), in
addition to e[I'ective charges [19]. The magnitude of the
form factor to the 24+ state relative to the other 2+ states
is not reproduced by the wave function in Ref. [13],while
24 is out of consideration in Ref. [8].

In Ref. [20], (p,p') data at E~ =65 MeV have been
analyzed by the distorted-wave Born approximation with
the present shell-model density matrices. The differential
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FIG. 2. Transition form factors from the ground state to the

lowest four 2+ states of ' Fe. Solid lined display Coulomb form
factors calculated by the shell model with the core-polarization
eA'ect. Those without core polarization are shown by dotted
lines. Circles, crosses, and diamonds exhibit experimental data
taken from Refs. [17], [18],and [8], respectively.
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cross sections have been reproduced for the excitations to
the 2]+, 22+, and 24+ states with much better agreement
than by using the wave functions of Ref. [8]. The excita-
tion to the 23+ state shows a strikingly anomalous angular
distribution. The present shell-model wave function re-
produces this anomaly, while the wave function of Ref.
[8] cannot. Therefore this angular distribution also indi-
cates the noncollective character of 23+. The validity of
our wave functions can be thus confirmed by the (e, e')
and (p, p') data.

In summary, the properties of low-lying 2+ states of
Fe have been described by a large-scale shell-model cal-

culation with a realistic interaction. The present shell-
model wave functions have been stringently tested by cal-
culating various physical observables, such as energy lev-

els, electromagnetic properties, (e,e') form factors, and

(p,p') diA'erentia[ cross sections. By inspecting the wave
functions, the 22+ and 24+ states are found to share the
mixed-symmetry component, while 23+ is an entirely non-
collective state. It is a notable consequence that the
mixed-symmetry 2+ component in the lower-energy re-
gion (E„(5 MeV) is concentrated on only two states, al-
though there are about ten 2+ states in this region. This
result is not trivial in a realistic treatment like the present
one, whereas the mixed-symmetry state naturally keeps
the purity in calculations using a restricted model space
as in Ref. [13]. We also find that the F-spin-like symme-
try is conserved remarkably well by the G-matrix interac-
tion.
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