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Hadron Masses in QCD with Two Flavors of Dynamical Fermions at P =5.7
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A hadron mass calculation is reported using two flavors of dynamical, staggered fermions with masses
of ma =0.01, 0.015, 0.02, and 0.025 on a 16'x32 lattice. The masses of hadrons containing valence
quarks with ma =0.004, 0.07, 0.1, 0.14, and 0.25 were also computed to study the limit ma 0 and the
strange particle spectrum. For ma =0.01, the mass ratio m~/m~=1. 527(11) is 25% larger than experi-
ment while the results f /m~=0. 14(1) and (mg —m, )/(m~ —m~)m~=2. 25(3) agree somewhat better.

PACS numbers: 12.38.6c

Lattice gauge theory simulations should permit the nu-
merical computation of low-energy hadronic physics
directly from the underlying theory of quantum chromo-
dynamics (QCD). Successful calculation of known
masses and matrix elements of low-lying hadron states
would provide an essential demonstration of the correct-
ness of lattice techniques and important underpinning for
new lattice QCD predictions of thermodynamic proper-
ties of the QCD vacuum or not yet measured weak ma-
trix elements.

Most recent large-scale lattice QCD calculations of
known hadronic masses and matrix elements try to ex-
plore and extend the available range of lattice volumes,
lattice spacings, and quark masses in an attempt to con-
trol the associated errors. To date this program has not
been entirely successful with one of the most accessible
hadronic mass ratios, mtv/m~, typically coming out 25%
too high [1].

In this paper we describe a series of lattice QCD calcu-
lations [2] that were carried out in about 9 months on the
256-node Columbia parallel supercomputer at a sustained
speed of 6.4 GIIops [3]. The dynamical eA'ects of two de-
generate flavors of staggered fermions are incorporated
using the hybrid-molecular-dynamics R algorithm [4].
We work on a 16 X32 lattice (we equilibrate the full
16 X32 lattice without "doubling" ) where the longer
time dimension allows a more precise fitting of the had-
ron propagators' exponential time dependence. In addi-
tion to using a variety of masses for our two dynamical
fermion flavors, with mass labeled m„„, , we also compute
the masses for states which contain one or more
"quenched" species of quarks that do not enter the fer-
mion determinant and have mass m„. ~. Table I lists the
masses, molecular-dynamics time step sizes (Ar), and
simulation times (r) for the calculations reported here.
The quantities h, r and r are defined according to Ref.
[4]. We used a conjugate gradient stopping condition of
(&2/S2)'/2( 1.1 X10 in the evolution and 2.2&&10

for the hadron propagators in the notation of Refs. [5,6].
To compute the hadron propagators, we use three ex-

tended spatial sources each corresponding to a different
color direction. For each source, the sites with even spa-

TABLE I. Combinations of sea quark and valence quark
masses with the corresponding times steps h, T: and the ranges of
molecular-dynamics time used in the calculation.

M seaa

0.01 (Ar =0.0078)

0.015 (tsr =0.0078)

0.02 (Ar =0.01)

0.025 (Ar =0.01)

mv„]a

0.01
0.004
0.015
0.07
0. 1

0.02
0.07
0. 1

0.025
0. 1

0.14
0.25

r range

1050-2700
250-2700
250-3010

1880-3010
250-1750
250-1425
250-1425
250-1425
530-2830

1480-2830
530-1480
200-500

tial coordinates on a specific time slice are assigned to the
same orthornormal color vector in Coulomb gauge. The
sink is completely local and formed from the conventional
hadron operators [7]. The boundary conditions are
periodic in the space and antiperiodic in the time direc-
tions for both the evolution and hadron propagator calcu-
lations.

Two methods, effective mass and fitting, are used to ex-
tract hadron masses from the propagators. A one-state
model with two parameters is used for the pion and a
two-state model with four parameters for the others.

The eff'ective mass m, tr(t) comes from propagators
with time separation t, t+ 1, . . . , t + n, where n = 1 for the
pseudoscalar mesons and n=3 for the other states. The
results for the p with rn„,. a =0.01 are shown in Fig. 1. A
nice plateau for t ~ 2 can be seen from which it is rela-
tively easy to deduce m~. The fitted mass mt„(t;„) is
determined from propagators with separation t;„to N, /2
by minimizing g computed using the full covariance ma-
trix [5]. We quote this fitted mass as our result. For
m„„.a =0.01 we use tm;„=9 for the pseudoscalar fits and
t;„=6 for the others, while for m„,. a & 0.01 we use the
corresponding values t;, =14 and 11. With these fitting
ranges we obtain values of g /(degree of freedom) ~ 2.
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FIG. 1. Four-parameter eff'ective-mass plot of p at ma =0.01
from data with r between 1050 and 2700. The upper points
represent the state with opposite parity in the same channel.

m da

FIG. 2. The nucleon mass (diamonds), p mass (circles), and
x mass squared (squares) as a function of m„d. The numerical
values are given in Table II.

The errors are computed with the jackknife technique us-

ing blocks of 30 time units and taking autocorrelation
into account. Only statistical errors are quoted.

The nucleon, p, and x masses obtained for the four
choices m, da =0.01, 0.015, 0.02, and 0.025 are shown in

Fig. 2 and given in Table II. For these results m„d
=m„,. l =m„, As can be seen, our large space-time
volume, considerable statistics, smaller lattice spacing,
and inclusion of dynamical quarks have not lowered the
high value of mIv/m~ [1,61.

Since our smallest quark mass m„da =0.01 gives a z
which is too massive, it is natural to attempt to extrapo-
late m, d down to the physical value. Unfortunately, this
is made di%cult by the nonlinear variation of mIv, m~,
and m, with quark mass shown in Fig. 2. Although the
eff'ect is only =2o for m/v and m~, it is more significant
for m where we have the additional constraint that
m, (m„d =0) =0. While m„da =0.015, 0.02, and 0.025
lie nicely on a line passing through the origin, the
m„d =0.01 point lies significantly above this line. If the
linearity of 0.015, 0.02, and 0.025 is coincidental and the
quark mass m„da=0.015 is too large for m to show
linear quark-mass dependence, then we cannot extrapo-
late m„d 0.

On the other hand, it is possible that the 0.01 point is
misleading either because the errors have been under-
estimated or because this lightest pion mass is being dis-
proportionately distorted by the finite lattice volume.
Without this 0.01 point, a linear fit of m, m~, m/v, and
(gg) to the three mass values 0.015, 0.02, and 0.025 yields

servation of axial-vector current) relation [8)
' t/2

3m„d(gg(m„d =0)&

2m~

and obtain f~ =0.044(1) or the dimensionless ratios

f /m~=0. 14(1) and f /m~=0. 095(6), where the m„d
0 values of mIv and m~ are used [9j. We can compare

these ratios to the experimental values 0.1212(2) and
0.0992(1), respectively, obtained using the measured
value f, =93.15(11)MeU.

In a consistent calculation the quark masses that enter
the fermion determinant (m„,)and t.hose that appear in

the hadron propagators (m„,, I) must be the same. Never-
theless, it is often convenient to distinguish them. Our re-
sults for all values of m„.,I and m„,. are combined in Fig.
3. Here we plot the hadron masses (or masses squared)
versus the total mass mt, t of all the valence quarks used
to form the state. The gross features of this figure can be
summarized in a strikingly simple fashion: The mass (or
mass squared) is approximately a linear function of mt
with intercept and slope nearly independent of m„, Of
course significant deviations from this simple universal
behavior are evident on the 5% level.

TABLE II. Masses and gg expectation value computed for
the four values of m„d =m, „I =m, „, used. The states ~(2) and

p(2) are flavor partners of the x and p. The lack of flavor de-

generacy is the result of finite-lattice-spacing eAects.

m, a = —0.011(3)+6.48(14)m„,qa (g =4.2),
m~a =0.31(2)+9.7(8)m„da (g =0.06),

mIva =0.47(3)+ 14.9(1.1)m„da (g =2.6),
(gg)a =0.0085(4)+1.99(2)m„da (g =1.1) .

These results can be used to determine the pion decay
constant f . We use the approximate PCAC (partial con-

m~a
m~(~)a
m/U a
(gg)a '

mIV/mp

0.01

0.252(3)
0.295(3)
0.454(4)
0.457 (7)
0.692 (6)
0.0277 (3)
1.527(11)

0.015
mw, da

0.02

0.293 (2)
0.333(3)
0.455 (8)
0.453 (7)
o.68s(1o)
0.0385(1)
1.506(13)

0.349 (2)
0.389(3)
0.501 (7)
0.502(9)
0.781 (10)
0.0483(2)
1.560(19)

0.025

0.388 (1)
0.436 (3)
o.ss 1 (4)
0.553 (5)
0.839(6)
o.os 84(1)
1.522(10)
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CU
CU

U

:o —0.005:~ —0.02
— ~ —0.015
:o —0.01

TABLE III. A comparison of the values that we obtain for
ratios of SU(3)-breaking mass differences with experiment.
Here B~~ represents the difference of the masses of the particles

and B in lattice units while 6'~q is the corresponding
difference of the squares of the masses. The strange states were
computed using a valence strange quark with the mass m, given
in the second column.

C3

!

0.2
rntota

0.4

C3

FIG. 3. Plot of nucleon masses (upper band), 1 vector
meson masses (middle band), and squares of pseudoscalar
meson masses (lower band) as a function of the total mass of
their valence quarks. The dynamical quark masses used are dis-

tinguished by symbols as shown in the key.

2
6A /8„e mp

2S,./6'. ..mp
2

bA./8A. ,mIV

~=IV &AIV

~AIVQA ~
p

0.015

0.07 2.24(3)
0. 1 2.41(1)
0. 1 1.60(2)
0.».94(1)
0. 1 1.96(3)
0. 1 1.07(4)

m geua

0.02

2. 15(2)
2.29(1)
1.47(2)
1.92(1)
1.98(3)
0.99(4)

0.025

~ ~ ~

2.18(2)
1.43(2)
1.91(1)
1.94(2)
1.07(3)

Expt.

2.388 (3)
2.388(3)
1.953(1)
2.033(2)
2. 146(1)
1.431(1)

Let us now examine these m, „. i&m„,. results in more
detail. Most easy to interpret are the m„„. =0.01, m„i
=0.004 calculations. Here we attempt to study small-
quark-mass behavior by using small m„. i. Of greatest in-
terest is the ratio m~/m~=1. 506(46) obtained with the
lighter m, ,ia =0.004 quarks. We can further compare
this to the same ratio computed above for m„,ia =m„,. a
=0.01 using the same ensemble of gauge configurations
with the results

(2)
m~/m~(m„, . la =0.01) =1.013 24

m~/m~(m»1a =0.004)

Thus, within our fixed 16 volume we see no significant
change in this ratio as the valence quark mass is de-
creased from 0.01 to 0.004.

We can use the above results to compute the mass
spectrum of the strange mesons and baryons in the (plau-
sible) approximation where the strange quark is omitted
from the fermion determinant. The linearity in m„.,i

shown in Fig. 3 guarantees that the results will be con-
sistent with the Gell-Mann-Okubo mass formula and can
be viewed as justifying octet dominance.

Let us discuss the strange mesons first. Our calcula-
tion gives the masses of the pseudoscalar and vector
states K and K* without further approximation. The
simulation of the p and nonstrange ru require the in-

clusion of intermediate gluon graphs which we have not
done. (These are graphs in which the source and sink can
be disconnected by cutting only gluon lines. ) However,
the near degeneracy of the p and m and the narrow width
of the p are conventionally interpreted as demonstrating
that the intermediate gluon graphs (which would split the
vector meson octet and singlet) are small compared to
SU(3)-breaking effects (i.e., m, —m„d) so that the ro-p
states are distinguished principally by their strange quark
content. The approximation of neglecting intermediate
gluon graphs implies m~=m„and allows us to interpret

our vector meson with two strange quarks as the p. We
show our predictions for the SU(3) violating differences
between the masses of these states in Table !II for
m„d =0.015, 0.02, and 0.025 as well as the corresponding
experimental values.

The results for strange baryons are more ambiguous.
In terms of the valence quarks, the A and X, are dis-
tinguished by the symmetry of the (u, d) quark pair —the
state is antisymmetric for the Z and symmetric for the
A . The conventional local nucleon operator which we
use [7], u, d~s, e'P' with a, P, and y color indices, contains
both combinations [10] and so is expected to couple to
both states. Thus we will assume that the mass we ex-
tract for the baryon containing one strange quark is that
of the lighter A . However, given the small mass
diA'erence between the A and the X, it is not clear that
our temporal range 0 ~ t ~ 16 is sufficient to eliminate or
even recognize a significant Z admixture.

The problem of interpreting the two-strange-quark, :--
like state is more severe. For the physical:-, Fermi statis-
tics requires the two strange quarks to be in an antisym-
metric state like the u and d quarks in the X, . However,
with the four species of staggered fermions that are
present in our propagator, it is likely that our state, =,
contains two distinct species of strange quarks in an un-

physical, symmetric state, which, in analogy with m~0
& m~o, one might expect to be lighter than the physical

Thus we expect discrepancies on the order of (m ~0—m Ao)/(m Ao
—miv) = 50%%uo in comparing our SU(3)-

breaking mass diff'erences with those for the correct ex-
perimental states. For completeness, we also give these
numbers in Table III.

Given the linearity shown in Fig. 3, it is natural to
present our results in terms of ratios of diA'erences in or-
der to avoid introducing strong dependence on the new
parameter m, [2]. In all but the first row of Table III we
use the value m, a =0.1 which was chosen to give the =-
nucleon splitting about right for the case m„„.a =0.025.
For m, a =0.1, m„da =0.025, we have (m= —mjv)/m~
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=0.458(14) compared to the measured value of
0.4039(1). Varying m, a among 0.07, 0.1, and 0.14
changes the numbers in Table III by less than 2 standard
deviations except for the ratio (mg —m )/(m~. —m~)m~
For that case we give both the m, a =0.07 and 0. 1 results.

It is interesting to speculate about the cause of the
large ratio mlv/m~=1. 5. Optimistically, one might sup-
pose that either m~ is too light or mz too heavy. Heuris-
tic arguments can be advanced for each possibility. The
nucleon, containing three quarks, may have its mass
disproportionately increased by finite-volume eA'ects. On
the other hand, the failure to allow the decay p~ trtr

caused by m )m~/2 could artificially lower the mass of
the p.

However, the notion that I ~=150 MeV should have an
important eff'ect on the p mass conflicts with the conven-
tional explanation of the m —m~=14 MeV degeneracy
and the small ratio I t, ,„,/I „,=1.1&&10, which
assumes that intermediate gluon graphs can be neglected.
This assumption should also imply that I ~ can be neglect-
ed since I ~= I ~

—I „and the latter diA'erence is also due
to intermediate gluon graphs.

The work reported here does not support the notion
that either m~ or m~ is computed more accurately than
the other. Our results for f,/mtv suggest that the nucleon
mass may be more successfully calculated, while the more
accurate ratio (mt' —m )/(mtr* —m~)m~ given in Table
III favors the interpretation that m~ may be less aA'ected

by systematic errors.
The most sensible interpretation of our results is that

their = 25% agreement with experiment can be quantita-
tively anticipated from the discrepancy from linear m„d
behavior seen in Fig. 2. This indicates systematic errors
coming from the extrapolation of m„d down to physical
values that are on this same 25% level. Thus we view our
results as a successful calculation of the ratios mtv/m~,

f /m~, and (mt' —m )/(m~. —m~)m~ with small statisti-
cal but = 25% systematic errors.
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