Quasiparticle Relaxation in a High- T_c Superconductor

Recent measurements by Eesley et al. [1] of transient reflectivity in superconducting Tl₂Ba₂Ca₂Cu₃O₁₀ were interpreted as evidence for order-parameter relaxation in the vicinity of T_c , which was analyzed in terms of BCS weak coupling for $\Delta(T)/\Delta(0)$. In this Comment we question this interpretation based on experimental evidence that laser pulse heating can mask the effect. Eesley et al. have shown [1] that the relaxation time τ_s in the superconducting state increases dramatically as T_c is approached; a similar increase was observed previously in $YBa_2Cu_3O_7$ [2,3] and in $Bi_2Sr_2Ca_2Cu_2O_{10}$ [3]. From a detailed temperature dependence at various power levels Eesley *et al.* inferred [1] that in the temperature range $(T_c - T)/T_c \le 0.15$ the relaxation time varies as τ_s $\propto T\Delta(T)^{-1}$ with a BCS-type $\Delta(T)/\Delta(0)$, similar to that in the usual low-temperature superconductors [4]. Because their relatively thick sample had a broad transition (onset at 120 K and zero resistance at 106 K), a clean divergence of τ_s was not observed at T_c ; inhomogeneities were claimed to contribute to this slow rise in τ_s near T_c .

In this Comment we show that the divergence of τ_s near T_c in a clean thin film is extremely sharp at low laser intensities. We measured the induced reflectivity $\Delta R(t)$ at 625 mm with 60 fsec time resolution on YBa₂Cu₃O₇ films, 3000 Å thick with $T_c \approx 89$ K and width of 2 K, expitaxially deposited by the uv laser ablation technique [2]. The samples were carefully handled and they were cooled only once through the phase transition; the average laser power was lower than 1 mW. For such a sample τ_s is proportional to the time $\tau_{1/2}$ it takes $\Delta R(t)$ to decay to half its initial value; we therefore show in Fig. 1 the behavior of $\tau_{1/2}$ as a function of temperature at various laser intensities. The onset of the divergence in $\tau_{1/2}$ shifts toward T_c as the intensity is reduced. Moreover, the shape of $\tau_{1/2}(T)$ changes at low illumination levels. The divergence of $\tau_{1/2}(T)$ is extremely sharp and sets in at $(T_c - T)/T_c \le 0.025$ with our lowest intensity, contrary to the data presented in Ref. [1]. A similar effect of laser heating in YBa₂Cu₃O₇ was observed [5] in the gradual sharpening of the 340-cm⁻¹ phonon softening with decreasing T below T_c , measured by Raman scattering, as the laser intensity was reduced. On the basis of the evidence presented above we therefore question the dependence of τ_s on $T_c - T$ in Ref. [1] and their conclusion of $\tau_s \propto T \Delta(T)^{-1}$. Careful measurements at very low laser intensities have to be made on clean sam-

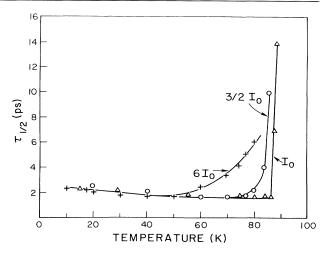


FIG. 1. Temperature dependence of quasiparticle relaxation time $\tau_{1/2}$ in YBa₂Cu₃O₇ at three different laser excitation intensities with $I_0 = 0.5 \ \mu \text{J} \text{ cm}^{-2}$ per pulse.

ples to verify this important relation. Moreover, if this relation were true, then our measurements shown in Fig. 1 indicate a much sharper $\Delta(T)/\Delta(0)$ than that expected for BCS; in fact, it is more in line with *strong coupling*.

This work was partially supported by a grant from PB America, Cleveland, Ohio.

S. G. Han,⁽¹⁾ Z. V. Vardeny,⁽¹⁾ O. G. Symko,⁽¹⁾ and G. Koren⁽²⁾ ⁽¹⁾University of Utah Salt Lake City, Utah 84112 ⁽²⁾Technion Haifa, 32000, Israel

Received 7 March 1991

PACS numbers: 74.40.+k, 73.50.Gr, 78.47.+p

- G. L. Eesley, J. Heremans, M. S. Meyer, G. L. Doll, and S. H. Liou, Phys. Rev. Lett. 65, 3445 (1990).
- [2] S. G. Han, Z. V. Vardeny, K. S. Wong, O. G. Symko, and G. Koren, Phys. Rev. Lett. 65, 2708 (1990).
- [3] J. M. Chwalek, C. Uher, T. F. Whitaker, G. A. Mourou, T. Agostinelli, and M. Lelental, Appl. Phys. Lett. 57, 1696 (1990).
- [4] I. Schuller and K. E. Gray, Phys. Rev. Lett. 36, 429 (1976); Solid State Commun. 23, 337 (1977).
- [5] C. Thomsen and M. Cardona, in *Physical Properties of HT_c Superconductors*, edited by D. M. Ginsburg (World Scientific, Singapore, 1989), p. 409.