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Comment on "Does Antimatter Fall with the Same
Acceleration as Ordinary Matter?"

In a series of Letters [1,2] the Eot-Wash Collaboration
has reported on their equivalence-principle experiment.
In a summary article [3] they stated that their experi-
ment limited an anomalous acceleration of antimatter to
10 g from quantum-gravity models. Reference [2] ex-
panded on Ref. [3], now claiming a limit of 2x10 g.

However, what they have actually shown is that, since
their [2] vector coupling is proportional to a conserved
charge (e.g. , baryon number), a precise cancellation by a
scalar requires its coupling to be effectively proportional
to this charge to a high accuracy; cancellations more pre-
cise than Ref. [2] envisions can occur naturally in many
theories (see below and Ref. [4]). Further, they give no
detailed long-range topographic or geologic error analysis
[1-3]. Independently, it is important to measure gravity
on antimatter [4,5] just as it is important to test the prin-
ciple of equivalence [1].

In Ref. [2] there is much discussion about the experi-
mental conclusion that Witteborn and Fairbank (WF)
observed the Schiff-Barnhill "electron-sag" effect in their
electron gravity experiment. However, for a quarter cen-
tury this result has remained an object of experimental
and theoretical controversy, involving the Dessler-
Michel-Rorschach- Trammell-Herring "ion-sag" and
patch effects [4,6]. (Eventually, Schiff came to accept
ion-sag dominance, concluding that WF "cannot be un-
derstood" given the "usual picture of the metallic sur-
face" [7]). In any event, surfaces have been developed
which should allow gravity to be measured on ions [8].
This would culminate in the original experimental propo-
sal [4] to measure g(P)/g(H ).

The analysis of Ref. [2] considers a possible anomalous
acceleration of antimatter due to "quantum gravity. "
However, of the three cases discussed, only the first two
are based upon a Lagrangian scalar interaction density.
The other case is a phenomenological parametrization.
Further, the analysis, especially in case (1), depends
heavily on details of only one example in the quantum-
gravity framework [4]. One is simply not restricted to
the forms in Ref. [2]. For example, all three cases in Ref.
[2] assume Xi =(a) 't V„J", with J" a dimension-three
operator. Such a dimension constraint is found in renor-
malizable gauge-field theories, but does not generally ap-
ply to gravitational theories [4].

The scalar coupling of case (1) of Ref. [2] also assumes
Xg =(b) 't pT"„. However, there exist other couplings of
the graviscalar field to either the gauge fields and/or oth-
er sources that reduce the differences between the vec-
tor and scalar couplings above. For example,
=(b) 't PU, where U =Pl (bf)/4)[F, "'F~„,], has a j =0
QED component which is closely related (by a virial) to a
constant fraction of the binding energy, whatever its Z
dependence. When added to L~, the resulting effective
coupling of the scalar is more closely proportional to the

vector coupling. (A similar argument can be made for
the j = 1, . . . , 8 QCD couplings [4].)

Case (2) is superAuous as it is equivalent to changing
the vector coupling in case (1) from 8 to (1 —e)B (for
[2] ky =Xs).

Case (3) generates an ad hoc phenomenological depen-
dence of the scalar coupling on ~B~ and 8 (and perhaps
it—see Fig. 3 of Ref. [2]). However, again the vector
coupling is assumed proportional to 8/p, so cancellation
simply requires the scalar to vary similarly. A more re-
vealing assumption would have been a case "orthogonal"
to case (1), that is, to assume qq =up+ ~B~. However,
then the Eot-Wash constraint is satisfied for reasonable
values of e.

Thus, while we agree that the precise cancellation de-
scribed in Ref. [2] is ruled out for the very specific cases
discussed there, it is neither excluded nor unnatural in the
more general case. A precise cancellation is "natural"
only if it is due to some (approximate) symmetry; howev-

er, that symmetry may not be immediately apparent.
Matter experiments can only lead us to conclude that
either there are no new effects or they cancel as if en-
forced by a symmetry. An antimatter experiment can de-
cide between the two. Therefore, although strong con-
straints can be set on some theories by present experi-
ments [1-3], they alone cannot rule out all anomalous
gravitational forces.

Finally, and most importantly, independent of any par-
ticular theoretical motivation [4], be it quantum gravity,
CPT violation, or something else, the measurement of
gravity on the antiproton would be unique among all fun-
damental gravity and particle-physics experiments. For-
tunately, a consensus now exists to this effect [5]. Even if
one obtains the Newtonian value one expects, one will
have learned something new and important.
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