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We present analytic and numerical studies of rupture propagation in a one-dimensional model of an
earthquake fault. In the case of a fault that is uniformly at its slipping threshold, the propagation speed
is determined by a dynamic selection mechanism elsewhere identified as “marginal stability.” At any
nonzero distance below threshold, however, a solvability principle appears to be applicable. We describe
the way in which these two mechanisms turn out to be consistent with each other and comment upon the

unusual role of the short-wavelength cutoff.
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Among the interesting problems that have emerged in
recent studies [1,2] of the dynamics of a model earth-
quake fault [3], one of the most challenging is that of
predicting the speeds at which ruptures propagate. In the
following, we present some analytic and numerical studies
that seem to go much of the way toward a solution of this
problem. As will be seen, however, this physical situation
possesses novel aspects which are, at best, only incom-
pletely explained by the results obtained so far. We be-
lieve that these results, as well as the questions that have
arisen, may have implications for a broader class of prob-
lems pertaining to fracture and shock propagation.

As described in previous publications [1,2], the model
of interest here is defined by a partial differential equa-
tion of the form

U
ds?

or, more precisely, by the finite-difference version of this
equation:

Uy =12U; 4\ +Uj=) —2U) —U; —9QalU;) . (2)

U= —U—¢Qal) )

Here, U; is the displacement of the elastic medium at po-
sition s =ja along the fault, where a is the smallest
relevant length scale in the problem, / =1/a, and j takes
on integer values. The overdots denote differentiation
with respect to time . The dimensionless units in which
displacements, position, and time are measured are dis-
cussed in detail in Refs. [1] and [2] but will not be of spe-
cial concern here. Note two small differences between
the form of Egs. (1) and (2) and the way in which they
appear in Ref. [2]. Here we have scaled the stiffness
length (previously called &) to unity because, for present
purposes, we want to go immediately to the limit of an
infinitely long system; thus, £=1 and a =1/I are the only
relevant length scales. Also, we have set the loading
speed (previously called v) to zero because we shall con-
sider only events that occur at some fixed state of stress
along the fault.

Apart from the nonlinear friction ¢, Eq. (1) is a mas-
sive wave equation scaled so that both the high-frequency
wave speed and the mass are unity. The first term on the
right-hand side may be thought of as the force due to ten-
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sile strains along the fault, and the second is the force due
to the shear strain that has built up in the abutting tec-
tonic plates. The friction ¢ is

(—oo,1]1, U=0,
0QalU)=11—2aU, 0<U=<1/2a, 3)
0, U>1/2a.

This, too, is a slightly different version of the stick-slip
friction law than the one we used previously; this piece-
wise linear function is a useful simplification for analytic
purposes. The parameter a, which is a measure of the
strength of the velocity-weakening instability, is precisely
the same as before. We must emphasize that this is a
minimal model of an earthquake fault that is missing
features that might be relevant to the rupture problem.
In particular, it will be interesting to see what happens to
rupture propagation in a model where the fault is more
realistically coupled to the elastic deformations of the tec-
tonic plates. An important motivation for the present in-
vestigation has been to make some progress toward un-
derstanding which features of this class of models are
relevant to which physical phenomena in realistic sys-
tems.

The most dramatic and, apparently, physically realistic
feature of this model is that it exhibits two qualitatively
different kinds of earthquakelike events: relatively small,
localized events with a power-law distribution of magni-
tudes; and large, delocalized events in which enough ener-
gy is released near the epicenter to trigger a propagating
rupture, that is, a shock front. A picture of one such
delocalized event, typical of those seen in numerical solu-
tions of (2) described in earlier publications, is shown in
Fig. 1 as a set of successive configurations U(s) at uni-
formly spaced times. The bottommost and uppermost
curves are, respectively, the initial and final configura-
tions. In this typical situation, the initial configuration is
irregular; the regions where U is closest to — 1 are the re-
gions where the system is nearest the slipping threshold,
and vice versa. The initial motion near the epicenter is
complex, but the two shock fronts that subsequently prop-
agate out in opposite directions are remarkably regular.
They move at a nearly constant speed, of order unity,
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FIG. 1. A set of successive snapshots, at equally spaced

times, of configurations U; as a delocalized event evolves. The
nearly vertical lines describe how the displacement at any point
j “snaps” quickly from its initial to its final value as the front
passes by in the direction shown by the arrows.

somewhat faster in regions where the system is close to
threshold and, conversely, more slowly where the system
is more tightly stuck. At either end of the event, the
shocks die out when they encounter strongly stuck regions
of the fault.

In order to study these motions more systematically, it
is useful to look at situations in which a rupture is propa-
gating through a system whose displacement is uniformly
an amount € away from threshold, that is, U;= —1+¢
for all . We find by numerical experiments that any
shock generated by an initially localized disturbance
propagates at a speed ¢ which is a well-defined function
of e.

To analyze this motion, we start with the case ¢=0.
This situation looks intriguingly like the one that has
been encountered in other contexts in which a dynamical-
ly stable state of a system propagates into an unstable
state [4-8]. The point of similarity is that the region
with e=0, U= —1 is unstable, and the region where U
has become restuck at some value appreciably greater
than —1 is stable in some sense. (An infinitesimal pertur-
bation has no effect because the sticking friction ¢ au-
tomatically balances the elastic forces.) There are some
important differences, however. In the first place, all of
the previously well-studied examples are parabolic
differential equations, first order in the time derivative,
whereas (1) is a wave equation with an extra unfamiliar
kind of nonlinear term ¢. More importantly, only the
finite-difference form, Eq. (2), actually is mathematically
well defined if we take literally the multiple-valued fric-
tion ¢ given in Eq. (3). As a result, some of the analytic
techniques that work for differential equations are not
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available to us.

In particular, we do not know for sure that this system
shares with those studied in Refs. [4-8] the important
property that there exists a continuous family of speeds ¢
for which propagating fronts of the form U(s —ct) are
exact solutions of the equation of motion. This property
usually is demonstrated by mode-counting arguments,
which do not work here. Nevertheless, the technique of
using the characteristic modes of the linearized equation
to study the initially small displacements ahead of the ad-
vancing front turns out to be quite productive.

Specifically, we write

Uj=—l+uj(t), 4)

where, for j sufficiently far ahead of the front, we may
expect u; to be small enough so that a linear approxima-
tion makes sense. For #; >0, the linearized version of
(2) is

i =11+ uj—1—2u;) —u;+2au; . (5)
Solutions of (5) have the form

u;(1)=A4(Q)exp(—Qj+Q1), 6)
where

2(Q)=a=[2/%(coshQ —1)+a?—11"2, 7

If (6) is to describe the forward region of a front propa-
gating at speed +c¢, and if ReQ > 0, then only the plus
sign in (7) is relevant, and we must have

2(Q)=IcQ. (®)

This equation has two branches of solutions with real Q
for a continuous range of values of ¢ greater than the
value c* at which the line Ic*Q is tangent to the curve
Q(Q). The “marginal-stability hypothesis” then suggests
that ¢* is the dynamically selected value of ¢, and that
the corresponding value of Q, say Q%, describes the
selected shape of the front.

More precisely, we expect that any initially localized
triggering pulse will generate a front for which Q satisfies
the condition that the wave velocity ¢ is the same as the
group velocity ¢, (Q) (analytically continued to imaginary
wave number),

_100 _

Q)= I 80 c, )]
which, together with (8), means that c=c* and Q =Q*.
Very crudely, the selected state is the one for which a lo-
calized perturbation, moving at ¢, (Q), just keeps up with
the front. For a more systematic derivation of (9) and a
discussion of stability, see Refs. [6] and [7]. A more gen-
eral and careful analysis has been presented by van Saar-
loos [8].

To test this dynamic selection hypothesis, we have per-
formed numerical experiments to measure ¢ for ¢ =0 and
various values of a and / and have compared these results
with the predictions of Egs. (8) and (9), also obtained
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numerically. The results are shown in Fig. 2. The selec-
tion mechanism appears to be completely accurate in this
limit (¢=0). It is also interesting to examine the predic-
tions of (8) and (9) in the continuum limit, />>1. To do
this, it is necessary only to expand coshQ in (7) to order
Q*. The result is

1/3 2/3
Q*z[l_?g] , c*2z1+[3—“] , I>1. (10)

Note that ¢* approaches the wave speed (unity) from
above as /— oo. The width of the shock, As=a/Q*
= (12al?) =", vanishes in this limit; but the number of
finite-difference elements (“blocks” in our previous termi-
nology) contained in the shock front, As/a = (I/12a)'3,
diverges. This nontrivial / dependence is a potentially im-
portant physical feature of this model [2].

The more difficult problem is to compute the propaga-
tion speed ¢ for a system that is initially below the slip-
ping threshold, that is, for ¢ > 0. If the analogy to previ-
ous work holds true, then there should be only a single
value of ¢, rather than a family of such speeds, for which
a propagating solution exists at any positive nonzero e.
The mystery is how the system contrives to make such a
“solvability”’ mechanism at € > 0 precisely consistent with
the dynamic selection mechanism in the limit e— 0 [9].

The calculation of ¢ at ¢ =0 was simplified by the fact
that the exponential tail that extends ahead of the front,
although very small, goes smoothly all the way out to
infinity. For nonzero ¢, on the other hand, at any instant
of time, there is a well-defined position at which rupture
is being initiated. In principle, we must solve the equa-
tions of motion accurately near that position, as well as at
all other positions, in order to determine the conditions
under which a propagating solution exists. In practice,
the latter problem is quite difficult. One complication is
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FIG. 2. The speed ¢ of the shock front obtained from numer-
ical solutions of Eq. (2) as a function of /. The crosses are for
a=3 and the squares for ¢ =1.5. The initial configuration is
unstable, i.e., ¢=0. The dashed lines are solutions of Egs. (8)
and (9).

that the selected front may not be stationary in the frame
moving at speed c; rather, it may have an oscillating com-
ponent with frequency c/a. Therefore, we have devised
an approximation which, at the expense of introducing
one (slightly) adjustable parameter, gives us some extra
insight into the nature of the selection mechanism.

Our hypothesis is that, for small ¢, the front is de-
scribed accurately by a single exponential mode of the
form (6), but that Q must become complex. More pre-
cisely, we assume that (6) is valid in some region not too
close to the point of initial rupture where many solutions
of (5) must be linearly superimposed to match the bound-
ary conditions, but still close enough to that point that
the linearization (5) remains valid, that is, # < 1/2a. The
piecewise linear version of ¢ given in (3) was chosen so as
to make the linear equation (5) accurate over as large a
range as possible for comparison with numerical analysis.
By allowing Q to be complex, we apparently gain just
enough degrees of freedom in this one-mode part of the
front to be able to construct a smooth solution for one,
but no more than one, value of the speed c.

Let Q=Q;xiQ, be the complex-conjugate pair of
solutions of Eq. (8) for ¢ Sc* and Q=Q*, and write, for
j<clt,

ui(t)=Aexpl—Q,(j —clt)lcoslQ:( —clt) + 681+ - - -,

an
where & is an undetermined phase. The notation
“+ ---”in (11) means that the term shown here is part
of the linear superposition of solutions of (5) that is need-
ed to match the boundary conditions at the moving point
of rupture, j=clt. In particular, in the quartic ap-
proximation for coshQ that was used in obtaining (10)
for />1 and e=0, there are two other modes of the
form exp(—Qj): a slowly decreasing mode with
0= Qal)”", and a rapidly growing mode with
Q= —2Q%*. To make a rough estimate of the amplitude
A, we superimpose these modes to fix u =€ and u =ii =0
at j=clt, and find Acosé= —ey/(a?l)¥? where ¥
=[3(12) 3] "'=0.145.

Although the term shown explicitly in (11) is small
compared to other contributions (which are of order €)
near j =clt, it becomes the dominant contribution to u; at
the position j'=clt —Aj where 2au =1 and the slipping
friction vanishes. Because A4 cosé is negative, the cosine
in (11) must change sign between j' and j, so that
0>Aj=06=nx. Thus, the equation determining Aj be-
comes

. eyQuel '’ o |1

ujv=—-—a4T-exp B—Q—z‘ =§’ (12)
and

Q1 _ 1. |2e7Qicl'?

—Qz_ eln —n | (13)

Equations (8) and (13) are sufficient to determine
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FIG. 3. The speed c of the shock front obtained from the nu-
merical solutions of Eq. (2) as a function of €, for /=5 and
a=1.5 (crosses), and for /=10 and a=1.5 (squares). The
dashed lines are the solutions of Egs. (8) and (13) with 6=nr
and y=0.1.

0 =0, X iQ; and c as functions of ¢ and the ratio a/l.

Our comparisons between the values of ¢ determined
by numerical experiments and by solving (8) and (13)
are shown in Fig. 3. For reasons that we do not under-
stand, we obtain excellent agreement nearly all the way
up to e=1 by choosing 8 == and setting y=0.1 instead
of 0.145. Remember that it is energetically impossible
for rupture to propagate at € > 1. Given the fact that all
of our analysis is applicable only for small ¢, and in view
of the uncertainty in the value of 6 and the crude way in
which we have estimated y, we do not believe that this
unexpected agreement is specially significant. The overall
pattern of agreement, however, gives us confidence that
our basic assumptions are correct. In addition to the data
shown in Fig. 3, we have numerically confirmed the pre-
diction that our results, for large enough /, should depend
only on the ratio a/l, and not on a or / separately.

Finally, it is useful to write out explicitly the solutions
of (8) and (13) in the limit />>1:

1/3
01~ 0" ~ |12¢ (2
/ >0 [In(2¢/3)] °
, 3 ” (14)
i1+ |22 1l——.
21 In%2(2¢/3)
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The most important feature of these formulas is that the
width of the region in which the linear approximation is
valid, Aj = 6/Q>, diverges logarithmically as ¢— 0. The
speed ¢ approaches ¢* in this limit and, again, the way in
which this happens is / dependent. These two properties
of our model—the appearance of a dynamic selection
mechanism as a limit of a qualitatively distinct solvability
mechanism, and the dependence of the selected speed and
shock front on the short-wavelength cutoff—so far as we
know have not been seen previously in systems of this
kind.
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