Crossover to Effectively Two-Dimensional Vortices for High- T_c Superconductors

Petter Minnhagen and Peter Olsson

Department of Theoretical Physics, Umeå University, 901 87 Umeå, Sweden (Received 14 February 1991)

By means of Monte Carlo simulations and Coulomb-gas scaling it is shown that the vortex fluctuations in the three-dimensional anisotropic XY model become effectively two dimensional just above the critical temperature. This suggests that the resistance scaling function in the case of high- T_c superconductors should be more identical to the one for conventional superconducting films. Some experimental evidence for this is pointed out.

PACS numbers: 75.10.Hk, 64.60.Cn, 74.70.Vy

Experiments on high- T_c superconductors strongly suggest that thermal vortex fluctuations associated with the CuO₂ planes are to a large extent responsible for the *IV* characteristics [1-7]. The support for this comes from measurements of the resistance parallel to the CuO₂ planes just above the superconducting transition temperature for Bi₂Sr₂CaCu₂O₈ crystals [1], Tl₂Ba₂CaCu₂O₈ crystals [2], and YBa₂Cu₃O₇ crystals [3,4], as well as from measurements of the nonlinear *IV* characteristics just below the transition for Bi₂Sr₂CaCu₂O₈ crystals [1,6,7] and for YBa₂Cu₃O₇ crystals [4].

Especially curious is the evidence found in Ref. [5] that the resistance scaling function for $Bi_2Sr_2CaCu_2O_8$ crystals appears to be nearly equal to the corresponding scaling function for conventional type-II superconducting films [8]. This suggests that the vortex fluctuations above the superconducting transition are effectively described by the same 2D (two-dimensional) Ginzburg-Landau Coulomb-gas model as are conventional 2D superconducting films [8,9]. Or, in other words, the superconducting planes for the $Bi_2Sr_2CaCu_2O_8$ crystals are in this sense effectively decoupled above T_c .

Analysis of the nonlinear IV characteristics for Bi₂Sr₂- $CaCu_2O_8$ crystals just below T_c suggests, on the other hand, that the scaling function for the exponent of the nonlinear IV characteristics is distinctly different from the corresponding scaling function for conventional 2D superconductors [10]. This is less surprising since the interplane coupling is expected to cause a difference between the characteristics of thermal vortex fluctuations for layered superconductors, like high- T_c superconductors, and those for 2D superconductors. In the former case the "bare" vortex interaction associated with a plane increases linearly with distance, where for 2D superconductors it increases logarithmically [11,12]. Furthermore, on the level of a 3D (three-dimensional) anisotropic XY model, it has been shown that this linear increase also dominates the effective vortex interaction below T_c [13]. Thus from this point of view a distinct difference between the characteristics of vortex fluctuations should be expected between layered superconductors and 2D superconductors below T_c . However, above T_c the linear part of the effective vortex interaction vanishes [13]. Consequently, this particular distinction between 3D and 2D vortex fluctuations vanishes above T_c .

In the present Letter we show, on the level of a 3D anisotropic XY model, that the distinction between 2D and 3D vortex fluctuations apparently altogether ceases above T_c . In fact, the description of the vortex fluctuations for the 3D anisotropic XY model above T_c collapses onto the very same Coulomb-gas description as the 2D XY model.

The 3D anisotropic XY model on a cubic lattice (with lattice constant a) is given by the Hamiltonian

$$H_{XY}^{3D} = -\sum_{\langle ij \rangle_{\parallel}} J_{\parallel} \cos(\theta_i - \theta_j) - \sum_{\langle ij \rangle_{\perp}} J_{\perp} \cos(\theta_i - \theta_j) , \qquad (1)$$

where the sums are over nearest-neighbor pairs on a cubic lattice and $\langle ij \rangle_{\parallel}$ denotes nearest-neighbor pairs belonging to the same superconducting plane (the superconducting planes correspond to the fundamental horizontal planes of the cubic lattice), $\langle ij \rangle_{\perp}$ denotes pairs belonging to two adjacent planes, and $-\pi < \theta_i \le \pi$ is the phase associated with the lattice point *i*. J_{\parallel} is the phase coupling within the superconducting planes and J_{\perp} is the interplane coupling. High- T_c superconductors correspond to $J_{\parallel} \gg J_{\perp}$ [11]. We have performed standard Monte Carlo simulations on this model using periodic boundary conditions and lattice sizes up to $64 \times 64 \times 64$ [14,15].

In order to determine the critical temperature T_c we have used a finite-size scaling of the helicity modulus parallel to superconducting planes γ_{\parallel} . Precisely at T_c we have $\gamma_{\parallel} \propto 1/N$ [16]. The helicity modulus γ_{\parallel} may be expressed as

$$\gamma_{\parallel}(N,T) = \frac{J_{\parallel}}{2N^3 a^2} \left\langle \sum_{\langle ij \rangle_{\parallel}} \cos(\theta_i - \theta_j) \right\rangle \\ - \frac{J_{\parallel}^2}{TN^3 a^2} \left\langle \left[\sum_{\langle ij \rangle_{\parallel}} \sin(\theta_i - \theta_j) \mathbf{e}_{ij} \cdot \hat{\mathbf{e}} \right]^2 \right\rangle, \quad (2)$$

where \mathbf{e}_{ij} is the vector from site *j* to site *i*, $\hat{\mathbf{e}}$ is a unit vector with fixed direction parallel to the superconducting plane, the sums are over nearest-neighbor pairs in the same superconducting plane, N^3 is the total number of lattice points, and $\langle \cdots \rangle$ denotes thermal averages. Figure 1 shows a determination of T_c by means of the finite-size scaling of the helicity modulus [17]. For $J_{\perp}/J_{\parallel}=0.1$ we obtain $T_c/J_{\parallel}\approx 1.33$ (as shown in Fig. 1) and for $J_{\perp}/J_{\parallel}=0.02$ we obtain $T_c/J_{\parallel}\approx 1.14$.

FIG. 1. Determination of T_c . Monte Carlo data for γ_{\parallel} with $J_{\perp}/J_{\parallel} = 0.1$ plotted as $N\gamma_{\parallel}/J_{\parallel}$ vs T/J_{\parallel} . The results are for four different lattice sizes $N \times N \times N$ with N = 8, 16, 32, and 64 corresponding to triangles, squares, diamonds, and circles, respectively. The lines through the data points are guides to the eye. Finite-size scaling implies that $N\gamma_{\parallel}$ should be N independent precisely at T_c . As seen in the figure this condition locates T_c at $T_c \approx 1.33J_{\parallel}$.

The vortex concept for the 3D XY model is defined by means of the phase differences between nearest neighbors, $\theta_{ij} = \theta_i - \theta_j$, restricted to the interval $-\pi < \theta_{ij} \le \pi$. A vortex at a square means that the sum of these θ_{ij} around the square is nonzero. To be more precise we may identify a square by the four lattice points sitting at its corners, denoted by 1,2,3,4, in the counterclockwise direction. The sum of the phase differences is $\Sigma \theta_{ij}$ $= \theta_{21} + \theta_{32} + \theta_{43} + \theta_{14}$ and the possible values for this sum are 0 and $\pm 2\pi$, corresponding to no vortex and a vortex with vorticity ± 1 , respectively.

We have determined the vortex density in the superconducting planes n as a function of temperature T. Figure 2 shows the result for three coupling-constants ratios $J_{\perp}/J_{\parallel}=0$, 0.02, and 0.1 plotted as $\ln(na^2)$ against T/J_{\parallel} (solid circles, open circles, and open squares, respectively). The two arrows in Fig. 2 denote T_c for $J_{\perp}/J_{\parallel} = 0.02$ and 0.1, respectively. T_c for the 2D XY model (i.e., $J_{\perp} = 0$ is $T_c/J_{\parallel} \approx 0.893$ [18]. The value $na^2 = \frac{1}{3}$ [or $\ln(na^2) \approx -1.1$ is the limiting value for $T \rightarrow \infty$, corresponding to independent phases. The striking thing to note is that the densities of thermally excited vortices for $J_{\perp}/J_{\parallel} = 0.02$ and 0.1, above their respective critical temperatures, are nearly equal to the thermal vortex density of the 2D XY model. The inescapable conclusion is that the superconducting planes to a large extent become decoupled above T_c for the 3D anisotropic XY model.

The surprising degree of two dimensionality of the vortex fluctuations above T_c can be made even more striking by invoking the Coulomb-gas scaling concept [8]. This concept is based on the following description of vortexfluctuations for a 2D superfluid: A bare superfluid density ρ_0^{2D} is identified as the superfluid density in the absence of vortex fluctuations. The vortices are then introduced into this bare superfluid density. This gives rise to a

FIG. 2. Vortex density associated with a fundamental horizontal plane for the 3D anisotropic XY model on a cubic lattice. The dimensionless quantity na^2 , where *n* is the vortex density and *a* is the lattice constant, is plotted as $\ln(na^2)$ vs T/J_{\parallel} . The results are from Monte Carlo simulations on a cubic lattice of size N=64. Solid circles, open circles, and open squares correspond to $J_{\perp}/J_{\parallel}=0$, 0.02, and 0.1, respectively. The two arrows mark the critical temperatures for $J_{\perp}/J_{\parallel}=0.02$ and 0.1 obtained as illustrated in Fig. 1. The lines are guides to the eye. The figure shows that above their respective critical temperatures the vortex densities for $J_{\perp}/J_{\parallel}=0.02$ and 0.1 become nearly equal to the vortex density for the 2D XY model. The conclusion is that the horizontal planes for the 3D anisotropic XY model to a large extent become decoupled above T_{c} .

description of vortex fluctuations in terms of a 2D Coulomb gas [8]. The properties of this Coulomb gas are controlled by an effective Coulomb-gas temperature variable, T^{CG} , given by $T^{CG} = T/2\pi\rho_0^{2D}(\hbar/m^*)^2$, where m^* is the mass of the superfluid particles [8]. It follows that T^{CG} for the 2D XY model is given by $T^{CG} = T/2\pi\gamma_0$, where γ_0 is the helicity modulus in the absence of vortices [8]. A dimensionless quantity defined within this Coulomb-gas model is only a function of T^{CG} [8]. The Coulomb-gas scaling concept is just the statement that such dimensionless quantities are, as functions of T^{CG} , "universal" for models which are described by the very same 2D Coulomb gas [8].

In order to test the universality of 2D vortex fluctuations for the 3D anisotropic XY model we calculate γ_0 by means of Monte Carlo simulations. This quantity is just γ_{\parallel} for one particular plane calculated within the configurational subspace for which all vortices are excluded from this particular plane (but included for all other planes) [19]. Figure 3 shows γ_0 obtained for $J_{\perp}/J_{\parallel}=0$, 0.02, and 0.1 (solid circles, open circles, and open squares, respectively). Note that γ_0 is renormalized by the interplane coupling; for $J_{\perp}/J_{\parallel} = 0.02$ only slightly, but for $J_{\perp}/J_{\parallel} = 0.1$ somewhat more. In other words, the bare 2D superfluid density gets renormalized by the interplane coupling. The amazing thing is that the vortex fluctuations apparently become two dimensional above T_c and are described by the very same Coulomb gas as the 2D XY model. This is demonstrated in Fig. 4 where we have

FIG. 3. The bare 2D superfluid density for the 3D anisotropic XY model. The bare 2D superfluid density is proportional to γ_0 which is the helicity modulus γ_{\parallel} for a horizontal plane within the configurational subspace which excludes vortices on this particular plane. The figure shows γ_0 for $J_{\perp}/J_{\parallel}=0$, 0.02, and 0.1 corresponding to solid circles, open circles, and open squares, respectively. As seen in the figure γ_0 gets renormalized by the perpendicular coupling J_{\perp} , i.e., J_{\perp} suppresses fluctuations and makes γ_0 larger.

plotted $\ln(na^2)$ as a function of T^{CG} . Above T_c (denoted by arrows in Fig. 4) the curves for $J_{\perp}/J_{\parallel} = 0.02$ and 0.1 (open circles and squares, respectively) collapse onto the curve corresponding to the 2D XY model (solid circles).

We note that the 2D behavior of the vortex fluctuations above T_c does not imply that the transition has a Kosterlitz-Thouless character. The phase transition for the 3D anisotropic XY model is presumably of second order [20]. That the transition is not of the Kosterlitz-Thouless type is somewhat obvious directly from Fig. 4. A Kosterlitz-Thouless transition is possible only for $T_c^{CG} \leq \frac{1}{4}$ [8]. However, as seen in Fig. 4, the transitions for $J_\perp/J_\parallel = 0.02$ and 0.1 take place at $T^{CG} > \frac{1}{4}$.

The main conclusion of the present Letter is thus that the vortex fluctuations for the 3D anisotropic XY model above T_c , at least to a very good approximation, are given by a 2D universal Coulomb-gas description.

The 3D anisotropic XY model can be viewed as a model of layered superconductors for which the magnitude variations of the order parameter have been suppressed. These magnitude variations can be included on the level of a Ginzburg-Landau description. For a 2D superconductor this leads to a description of vortex fluctuations in terms of the 2D Ginzburg-Landau Coulomb gas [8]. It has been shown for conventional type-II superconducting films that Coulomb-gas scaling is obeyed for the resistance ratio R/R_N just above the superconducting transition [8]. $(R/R_N \text{ is proportional to } n_F \xi^2$, where n_F is the density of free vortices and ξ is the Ginzburg-Landau coherence length [8].) A description on the same level for layered superconductors, like high- T_c superconductors, involves, in addition, an interplane Josephson coupling in a similar way as the 3D anisotropic XY model [11,21]. This suggests, by analogy to our present results

FIG. 4. 2D Coulomb-gas universality for the 3D anisotropic XY model. The dimensionless quantity na^2 as a function of the Coulomb-gas temperature variable; $T^{CG} = T/2\pi\gamma_0$ is a Coulomb-gas scaling function. The figure gives $\ln(na^2)$ vs T^{CG} for $J_\perp/J_{\parallel}=0, 0.02$, and 0.1 corresponding to solid circles, open circles, and open squares, respectively. The two arrows mark the critical temperatures for $J_\perp/J_{\parallel}=0.02$ and 0.1. The lines are guides to the eye. $\ln(na^2)$ as a function of T^{CG} for $J_\perp/J_{\parallel}=0.02$ and 0.1, above their respective critical temperatures, collapse onto the corresponding function for the 2D XY model ($J_\perp=0$). The conclusion is that the 3D anisotropic XY model, at least to a very good approximation, exhibits 2D Coulomb-gas universality above T_c .

for the 3D anisotropic XY model, that vortex fluctuations for high- T_c superconductors above T_c are given by the 2D Ginzburg-Landau Coulomb-gas model. This was in fact precisely the curious evidence extracted from experiments on Bi₂Sr₂CaCu₂O₈ crystals in Ref. [5] mentioned above.

Stimulating discussions with H. Jeldtoft Jensen, M. Nylén, and H. Weber are gratefully acknowledged as is support from the Swedish Natural Science Research Council.

- [1] S. Martin, A. T. Fiory, R. M. Fleming, G. P. Espinosa, and S. A. Cooper, Phys. Rev. Lett. 62, 677 (1989).
- [2] D. H. Kim and A. M. Goldman, Phys. Rev. B 40, 8834 (1989).
- [3] P. C. E. Stamp, L. Forro, and C. Ayache, Phys. Rev. B 38, 2847 (1988).
- [4] N.-C. Yeh and C. C. Tseui, Phys. Rev. B 39, 9708 (1989).
- [5] P. Minnhagen, Solid State Commun. 7, 25 (1989).
- [6] S. N. Artemenko, I. G. Gorlova, and Yu. I. Latyshev, Pis'ma Zh. Eksp. Teor. Fiz. 49, 566 (1989) [JETP Lett. 49, 654 (1989)].
- [7] I. G. Gorlova and Yu. I. Latyshev, Pis'ma Zh. Eksp. Teor.
 Fiz. 51, 197 (1990) [JETP Lett. 51, 224 (1990)].
- [8] For a review see, e.g., P. Minnhagen, Rev. Mod. Phys. 59, 1001 (1987).
- [9] H. Weber and P. Minnhagen, Phys. Rev. B 38, 8730 (1988).
- [10] P. Minnhagen (to be published).

- [11] V. Cataudella and P. Minnhagen, Physica (Amsterdam) 166C, 442 (1990).
- [12] L. I. Glazmann and A. E. Koshelev, Zh. Eksp. Teor. Fiz.
 97, 1371 (1990) [Sov. Phys. JETP 70, 774 (1990)].
- [13] P. Minnhagen and P. Olsson (to be published).
- [14] N. Metropolis, A. W. Rosenbluth, N. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
- [15] For a review see, e.g., Monte Carlo Methods in Statistical Physics, edited by K. Binder (Springer, New York, 1979).
- [16] Min-Chul Cha, M. P. A. Fisher, S. M. Girvin, M. Wallin, and A. P. Young (to be published).
- [17] K. Binder, Z. Phys. B 43, 119 (1981), suggests an alter-

native method based on another combination of spin correlations. We have tested this method as well and the results are the same, but the method based on the finitesize scaling of the helicity modulus appears to be more efficient for the present model.

- [18] P. Olsson and P. Minnhagen, Phys. Scr. 43, 203 (1991).
- [19] This is implemented into the Metropolis algorithm by simply rejecting all phase changes which lead to a vortex.
- [20] W. Janke and T. Matsui, Phys. Rev. B 42, 10673 (1990).
- [21] W. E. Lawrence and S. Doniach, in Proceedings of the International Conference on Low Temperature Physics, Kyoto, 1970, edited by E. Kanda (Keigaku, Tokyo, 1971), p. 361.