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Crossover to Effectively Two-Dimensional Vortices for High-T, Superconductors
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By means of Monte Carlo simulations and Coulomb-gas scaling it is shown that the vortex fluctuations
in the three-dimensional anisotropic XY model become effectively two dimensional just above the critical
temperature. This suggests that the resistance scaling function in the case of high-T, superconductors
should be more identical to the one for conventional superconducting films. Some experimental evidence
for this is pointed out.

PACS numbers: 75. 10.Hk, 64.60.Cn, 74.70.Vy

Experiments on high-T, superconductors strongly sug-
gest that thermal vortex fluctuations associated with the
Cu02 planes are to a large extent responsible for the IV
characteristics [1-7]. The support for this comes from
measurements of the resistance parallel to the Cu02
planes just above the superconducting transition tempera-
ture for Bi2Sr2CaCu20s crystals [I], T12Ba2CaCu20s
crystals [2], and YBa2Cu307 crystals [3,4], as well as
from measurements of the nonlinear IV characteristics
just below the transition for Bi~Sr2CaCu208 crystals
[1,6,7] and for YBa2Cu307 crystals [4].

Especially curious is the evidence found in Ref. [5] that
the resistance scaling function for Bi2Sr2CaCu208 crys-
tals appears to be nearly equal to the corresponding scal-
ing function for conventional type-I I superconducting
films [8]. This suggests that the vortex fluctuations above
the superconducting transition are effectively described
by the same 2D (two-dimensional) Ginzburg-Landau
Coulomb-gas model as are conventional 2D supercon-
ducting films [8,9]. Or, in other words, the superconduct-
ing planes for the Bi2Sr2CaCu20s crystals are in this
sense effectively decoupled above T, .

Analysis of the nonlinear IV characteristics for Bi2Sr2-
CaCu208 crystals just below T, suggests, on the other
hand, that the scaling function for the exponent of the
nonlinear IV characteristics is distinctly different from
the corresponding scaling function for conventional 2D
superconductors [10]. This is less surprising since the in-
terplane coupling is expected to cause a difference be-
tween the characteristics of thermal vortex fluctuations
for layered superconductors, like high-T, superconduc-
tors, and those for 2D superconductors. In the former
case the "bare" vortex interaction associated with a plane
increases linearly with distance, where for 2D supercon-
ductors it increases logarithmically [11,12]. Further-
more, on the level of a 3D (three-dimensional) anisotrop-
ic XY model, it has been shown that this linear increase
also dominates the effective vortex interaction below T,
[13]. Thus from this point of view a distinct difference
between the characteristics of vortex fluctuations should
be expected between layered superconductors and 2D su-
perconductors below T, . However, above T, the linear
part of the effective vortex interaction vanishes [13].
Consequently, this particular distinction between 3D and

2D vortex fluctuations vanishes above T, .
In the present Letter we show, on the level of a 3D an-

isotropic XY model, that the distinction between 2D and
3D vortex fluctuations apparently altogether ceases above
T, . In fact, the description of the vortex fluctuations for
the 3D anisotropic XY model above T, collapses onto the
very same Coulomb-gas description as the 2D XY model.

The 3D anisotropic XY model on a cubic lattice (with
lattice constant a) is given by the Hamiltonian

HgP= —g J~~cos(8; —0~) —g Juncos(8; —8~),
(ij)ii (ij )~

where the sums are over nearest-neighbor pairs on a cubic
lattice and (ij)(~ denotes nearest-neighbor pairs belonging
to the same superconducting plane (the superconducting
planes correspond to the fundamental horizontal planes of
the cubic lattice), (ij )& denotes pairs belonging to two
adjacent planes, and —z ( 0; ~ z is the phase associated
with the lattice point i. J~~ is the phase coupling within
the superconducting planes and J~ is the interplane cou-
pling. High-T, superconductors correspond to J~~&&J&
[11]. We have performed standard Monte Carlo simula-
tions on this model using periodic boundary conditions
and lattice sizes up to 64 x 64 x 64 [14,15].

In order to determine the critical temperature T, we
have used a finite-size scaling of the helicity modulus
parallel to superconducting planes y~~. Precisely at T, we
have y~((x I/N [16]. The helicity modulus y(~ may be ex-
pressed as

ys(N, T) =
s s g ccs(8; —8~))2N g (ij)ii

Jll g sic (8; —
8~ )e; e s),TN a (ij)ii

where e;j. is the vector from site j to site i, c is a unit vec-
tor with fixed direction parallel to the superconducting
plane, the sums are over nearest-neighbor pairs in the
same superconducting plane, N is the total number of
lattice points, and ( . ) denotes thermal averages. Fig-
ure 1 shows a determination of T, by means of the finite-
size scaling of the helicity modulus [17]. For J~/J(~ =0.1

we obtain T,/J~~ = 1.33 (as shown in Fig. 1) and for
J~/J~(=0. 02 we obtain T,/J~~ = 1.14.
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FIG. 1. Determination of T,. Monte Carlo data for yii with

J&/Jism=0. 1 plotted as Nycti/Jii vs T/J~i. The results are for four
different lattice sizes N xN xN with N =8, 16, 32, and 64 cor-
responding to triangles, squares, diamonds, and circles, respec-
tively. The lines through the data points are guides to the eye.
Finite-size scaling implies that Nycti should be N independent
precisely at T,. As seen in the figure this condition locates T,
at T, = 1.33Jii.

The vortex concept for the 3D XY model is defined by
means of the phase differences between nearest neigh-
bors, 0;~ =0; —0i, restricted to the interval —z ( 0;i z.
A vortex at a square means that the sum of these 0;,
around the square is nonzero. To be more precise we

may identify a square by the four lattice points sitting at
its corners, denoted by 1,2,3,4, in the counterclockwise
direction. The sum of the phase diA'erences is QO;/

0$] +032+ 043+ 0]4 and the possible values for this sum
are 0 and + 2tt, corresponding to no vortex and a vortex
with vorticity 4- 1, respectively.

We have determined the vortex density in the super-
conducting planes n as a function of temperature T. Fig-
ure 2 shows the result for three coupling-constants ratios
J~/Jism=0, 0.02, and 0.1 plotted as In(na ) against T/Jii
(solid circles, open circles, and open squares, respective-
ly). The two arrows in Fig. 2 denote T, for J&/Jii =0.02
and 0.1, respectively. T, for the 2D A'Y model (i.e. ,

J~ =0) is T,/Jism=0. 893 [18]. The value na = —,
' [or

In(na ) = —1.1] is the limiting value for T ~, corre-
sponding to independent phases. The striking thing to
note is that the densities of thermally excited vortices for
J~/Jii =0.02 and 0.1, above their respective critical tem-
peratures, are nearly equal to the thermal vortex density
of the 2D XY model. The inescapable conclusion is that
tAe superconductIng planes to a large extent become
decoupled above T, for the 3D anisotropic A'Y model

The surprising degree of two dimensionality of the vor-
tex Auctuations above T, can be made even more striking
by invoking the Coulomb-gas scaling concept [8]. This
concept is based on the following description of vortex-
fluctuations for a 2D superAuid: A bare superAuid densi-

ty po is identified as the superfluid density in the absence
of vortex Auctuations. The vortices are then introduced
into this bare superAuid density. This gives rise to a

FIG. 2. Vortex density associated with a fundamental hor-
izontal plane for the 3D anisotropic XY model on a cubic lat-
tice. The dimensionless quantity na, where n is the vortex den-
sity and a is the lattice constant, is plotted as ln(na') vs T/J~i.
The results are from Monte Carlo simulations on a cubic lattice
of size N =64. Solid circles, open circles, and open squares cor-
respond to J&/Jii =0, 0.02, and 0.1, respectively. The two ar-
rows mark the critical temperatures for Ji/Jii =0.02 and 0. 1

obtained as illustrated in Fig. 1. The lines are guides to the eye.
The figure shows that above their respective critical tempera-
tures the vortex densities for J~/Ji~ =0.02 and 0. 1 become near-

ly equal to the vortex density for the 2D XY model. The con-
clusion is that the horizontal planes for the 3D anisotropic XY
model to a large extent become decoupled above T, .

description of vortex Auctuations in terms of a 2D
Coulomb gas [8]. The properties of this Coulomb gas are
controlled by an effective Coulomb-gas temperature vari-
able, T, given by T =T/2trpo (h, /m*), where m*
is the mass of the superAuid particles [8]. It follows that
T for the 2D XY model is given by T =T/2tryo,
where yo is the helicity modulus in the absence of vortices
[8]. A dimensionless quantity defined within this Cou-
lomb-gas model is only a function of Tco [8]. The Cou-
lomb-gas scaling concept is just the statement that such
dimensionless quantities are, as functions of T
"universal" for models which are described by the very
same 2D Coulomb gas [8].

In order to test the universality of 2D vortex Auctua-
tions for the 3D anisotropic XY model we calculate yo by
means of Monte Carlo simulations. This quantity is just
y~i for one particular plane calculated within the con-
figurational subspace for which all vortices are excluded
from this particular plane (but included for all other
planes) [19]. Figure 3 shows yo obtained for J~/Jism=0,
0.02, and 0. 1 (solid circles, open circles, and open
squares, respectively). Note that yo is renormalized by
the interplane coupling; for J&/Jii =0.02 only slightly, but
for J&/Jii =0.1 somewhat more. In other words, the bare
2D superfluid density gets renormalized by the interplane
coupling. The amazing thing is that the vortex flfuctua
tions apparently become t~o dimensional above T, and
are described by the very same Coulomb gas as the 2D
XY model. This is demonstrated in Fig. 4 where we have
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FIG. 3. The bare 2D superfluid density for the 3D anisotrop-
ic A'Y model. The bare 2D superfluid density is proportional to
yo which is the helicity modulus y~] for a horizontal plane within
the configurational subspace which excludes vortices on this
particular plane. The figure shows yo for J&/J~~ =0, 0.02, and
0. 1 corresponding to solid circles, open circles, and open
squares, respectively. As seen in the figure yo gets renormalized
by the perpendicular coupling J&, i.e., J& suppresses fluctua-
tions and makes yo larger.

plotted [n(na ) as a function of T . Above T, (denoted
by arrows in Fig. 4) the curves for J~/J~~ =0.02 and 0. 1

(open circles and squares, respectively) collapse onto the
curve corresponding to the 2D A'V model (solid circles).

We note that the 2D behavior of the vortex Auctuations
above T, does not imply that the transition has a Kost-
erlitz-Thouless character. The phase transition for the
3D anisotropic XY model is presumably of second order
[20]. That the transition is not of the Kosterlitz-Thou]ess
type is somewhat obvious directly from Fig. 4. A
Kosterlitz-Thouless transition is possible only for T,

[8]. However, as seen in Fig. 4, the transitions for
J~/J~~ =0.02 and 0. 1 take place at T

The main conclusion of the present Letter is thus that
the vortex fluctuations for the 3D anisotropic XY model
above T„at least to a very good approximation, are given
by a 2D universal Coulomb-gas description.

The 3D anisotropic XY model can be viewed as a mod-
el of layered superconductors for which the magnitude
variations of the order parameter have been suppressed.
These magnitude variations can be included on the level
of a Ginzburg-Landau description. For a 2D supercon-
ductor this leads to a description of vortex fluctuations in

terms of the 2D Ginzburg-Landau Coulomb gas [81. It
has been shown for conventional type-II superconducting
films that Coulomb-gas scaling is obeyed for the resis-
tance ratio R/R~ just above the superconducting transi-
tion [8]. (R/R~ is proportional to nF(, where nF is the
density of free vortices and g is the Ginzburg-Landau
coherence length [8].) A description on the same level
for layered superconductors, like high-T, superconduc-
tors, involves, in addition, an interplane Josephson cou-
pling in a similar way as the 3D anisotropic LY model
[11,21]. This suggests, by analogy to our present results

FIG. 4. 2D Coulomb-gas universality for the 3D anisotropic
XY model. The dimensionless quantity na as a function of the
Coulomb-gas temperature variable; T =T/2xyo is a Cou-
lomb-gas scaling function. The figure gives ln(na') vs T for
J~/J~~ =0, 0.02, and 0. 1 corresponding to solid circles, open cir-
cles, and open squares, respectively. The two arrows mark the
critical temperatures for J~/J~~ =0.02 and 0.1. The lines are
guides to the eye. In(na') as a function of T for Jz/J~~
=0.02 and 0.1, above their respective critical temperatures, col-
lapse onto the corresponding function for the 2D XY model
(J& =0). The conclusion is that the 3D anisotropic XY model,
at least to a very good approximation, exhibits 2D Coulomb-gas
universality above T, .

for the 3D anisotropic XY model, that vortex Auctuations
for high-T, superconductors above T, are given by the
2D Ginzburg-Landau Coulomb-gas model. This was in
fact precisely the curious evidence extracted from experi-
ments on Bi2SrqCaCu20s crystals in Ref. [5] mentioned
above.

Stimulating discussions with H. Je]dtoft Jensen, M.
Nylen, and H. Weber are gratefully acknowledged as is
support from the Swedish Natural Science Research
Council.
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