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Multicritical Phase Diagrams of the Blume-Emery-Gri5ths Model
with Repulsive Biquadratic Coupling
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Six new phase diagrams, including a novel multicritical topology and two new ordered phases, high-
entropy ferrimagnetic and antiquadrupolar, are found in the spin-1 Ising model with only nearest-
neighbor interactions, for negative biquadratic couplings. Thus, the global phase diagram of this simple
spin system includes nine distinct topologies and three ordered phases. It is indicated that these results,
obtained by mean-field theory, are applicable to three-dimensional systems.

PACS numbers: 75.10.Hk, 05.70.Fh, 64.60.Kw, 75.50.6g

The Blume-Emery-Griffiths (BEG) model [1,2] is the
most general spin-1 Ising model with nearest-neighbor in-
teractions and up-down symmetry, with Hamiltonian

P& =Jg—s;sI+Kgs; sj —Ags;,

composed, respectively, of bilinear interaction, biquadrat-
ic interaction, and crystal-field terms. In Eq. (1), the
spin s; =0, ~ 1 is at each site i of a lattice, each site has z
nearest neighbors, and (ij) denotes summation over all
nearest-neighbor pairs of sites. First studied [1] in the
context of superfluidity and phase separation in helium
mixtures, this model has been extended to solid-liquid-gas
systems [3], multicomponent Auid and liquid crystal mix-
tures [3], microemulsions [4], and semiconductor alloys
[5]. In fact, the BEG model is, much more generally, the
basic model for systems in which the phase transitions
can be driven by symmetry-breaking Auctuations (s;=+ 1) and by density Auctuations (s; =1,0). The BEG
model has moreover played an important guiding role in
the development of microscopic models for adsorbed sys-
tems [6] and in the renormalization-group theory of Potts
transitions [7].

The BEG model, for positive (J,K) 0) interactions,
has been globally analyzed by mean-field [ll and renor-
malization-group [2] methods. Antiferromagnetic bilin-
ear (J (0) interactions are simply mapped onto the fer-
romagnetic cases (J —J) by redefining the spin direc-
tion on one sublattice, in lattices that are decomposed
into two sublattices, to which we limit ourselves presently.
Thus, with no loss of generality, we discuss non-negative
J in the remainder of this article. The case of repulsive
biquadratic (K & 0) interactions [8,9], however, is drasti-
cally and richly different, as will be seen from the global
study reported in this paper. Six new phase diagrams,
featuring two new phases and a novel multicritical topolo-
gy, are thus obtained. One of these phases has high en-
tropy content and spans only intermediate temperatures.
Attention has been drawn independently to the negative
biquadratic interactions region of the BEG model
through a connection to the t-J model of electronic con-
duction [10] and through the applicability to ordering in
semiconductor alloys [11].

~a =(st)a, Q~ =(st')~, Qa =(st')a, (3)

where 2 and 8 refer to the two sublattices. These sub-
scripts will not be displayed when sublattice symmetry is
not broken. Classical mean-field theories are expected to
be valid in higher spatial dimensions. From connections
we make to Potts antiferromagnetism, it will be seen
below that the new multicritical structures should already
occur in three dimensions (d=3).

The global phase diagram is conveyed in Figs.
1(a)-1(i), which are the distinct constant-K/J cross sec-
tions in the temperature (1/zJ) versus chemical potential
(A/zJ) variables. The corresponding cross sections in
temperature versus density (s; ) are given in Figs.
2(a)-2(i). We first brieAy review the cross sections for
K/J~0: For large positive values of K/J [e.g. , Fig.
1(a)], a critical line terminates at a critical end point (E)
on a line of first-order transitions, which itself terminates
at a critical point (C). The ferromagnetic phase (f) is
distinguished by M~O. The disordered phase (d) exhib-
its distinct dense and dilute versions coexisting on the
higher-temperature segment of the first-order line. For
values of K/J close to zero [e.g. , Fig. 1(c)], the critical
line meets the first-order line at a tricritical point (T). In
between these two topologies, for K/J values close to 3, a
phase diagram topology with a tricritical point (T), a tri-
ple point (R), and a critical point (C) occurs [e.g. , Fig.
1(b)].

Six new phase diagram topologies were found when we
extended the K/J values to negative values: (1) The tri-
critical phase diagram develops a doubly reentrant topol-
ogy [e.g. , Fig. 1(d)]. As temperature is lowered at fixed

Our study is a mean-field theory, based on the Gibbs
inequality for the free energy [12],

F ~ Trp&+P 'Trplnp,

where p is any acceptable density matrix (i.e., Hermitian,
non-negative, and normalized). We minimized the right
side of this equation for the most general density matrix
that is factored into single-site density matrices, allowing
for sublattice symmetry breaking. The resulting phases
are variously distinguished by four order parameters,
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FIG. 1. Phase diagrams for K/J values of (a) 5, (b) 3, (c) 0, (d) —0.15, (e) —0.5, (f) —1, (g) —1.5, (h) —3, and (i) —3.5.

Disordered (d), ferromagnetic (f), ferrimagnetic (i), and antiquadrupolar (a) phases are found. Dashed and solid lines, respectively,
indicate first- and second-order phase transitions. The special points are critical (C,C'), critical end point (E,E', E"), zero-
temperature critical (Z), zero-temperature highly degenerate (S), bicritical (B), tricritical (T,T"), tetracritical (M), multicritical
(A), and triple (R). The open and solid arrows, respectively, indicate the three-state Potts ferromagnetic and antiferromagnetic sub-
spaces.

chemical potential, the disordered-ferromagnetic-dis-
ordered-ferromagnetic sequence of phases is encountered.
This topology terminates by a fourth order point (-see

below) occurring at the stability limit of tricriticality,
K/J =1/410 —1/2= —0.18. (2) For 1/410 —1/2 & K/
J & —1, there occur a critical end point (E') and, inside
the ferromagnetic phase, a first-order line segment ter-
minating at a critical point (C') [e.g., Fig. 1(e)]. Thus,
in this case, the ferromagnetic phase exhibits distinct
dense and dilute versions coexisting on the higher-
temperature segment of the first-order line. (These coex-
isting phases, four in number when up or down magneti-
zation is taken into account, are the phases that become
mutually critical at the fourth-order point mentioned
above. ) We distinguish this "internal" critical-
point-end-point structure from the "external" critical-
point-end-point structure of the large positive K/ J
values. As K/J approaches —1, this internal structure
co1lapses toward zero temperature and thus disappears at
K/J= —1. (3) At K/J= —1, a singly reentrant critical
line reaches zero temperature [Fig. 1(f)] at the point Z,

which, as a critical point characterized by fluctuations at
zero temperature, should be in a diA'erent universality
class than the critical line it terminates.

For K/J ( —1, two new ordered phases emerge. The
ferrimagnetic phase [8] is characterized by nonzero mag-
netization and sublattice symmetry breaking:

OHMIC &Me&0, Qg &Qe .

This ferrimagnetic phase has high entropy content and
spans in field-space intermediate temperatures only. The
antiquadrupolar phase [8] has sublattice symmetry
breaking, but zero magnetization:

M~ =Me =o, Q~&Qa.

(4) Thus, for —1 & K/J & —3, the ferromagnetic (f)
and antiquadrupolar (a) phases are separated from the
disordered phase by two critical lines that meet at a bi-
critical point [9] (8) [e.g. , Fig. 1(g)]. The antiquadrupo-
lar phase is separated from the nonzero-magnetization
phases by the erst-order line that terminates at the bicrit-
ical point. The ferromagnetic (f) and ferrimagnetic (i)
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FIG. 2. Phase diagrams in temperature and density corresponding to Fig. (1). Unmarked regions are the coexistence regions of
the phases on each side. Dashed and solid lines, respectively, indicate coexistence boundaries and second-order boundaries. The open
and solid arrows, respectively, indicate the three-state Potts ferromagnetic and antiferromagnetic subspaces.

phases are separated by another critical line terminating
at the critical end point E" on the first-order line. The
zero temperature (1/zJ=O), 5/zJ=K/I+ I, and K/J( —I points (S), where the three ordered phases meet,
are points of high degeneracy, namely, the saturated fer-
romagnetic (M~ =Q~ =Ms =QII = 1) and antiquadrupo-
lar (Q~ = I,M~ =MII =QII =0) states, and the continu-
um of ferrimagnetic macroscopic states (M~ =Q~ = 1,
1/2 & Ms =QII & 1) minimize the mean-field free energy,
as seen by the associations of Figs. 1 and 2. As K/J ap-
proaches —3, the critical end point approaches the bicrit-
ical point.

(5) At K/J= —3 [Fig. 1(h)], these two points merge.
A novel multicritical topology is found around this point
2, where three critical lines and one first-order line meet.
The first-order line occurs at constant chemical potential
(and the low-temperature critical line reaches A with
vertical slope). In fact, on the locus K/J= —3, A/zJ
= —2, which contains the first-order line, the BEG model
reduces to the antiferromagnetic three-state Potts model
[13]:

—P/i' = —3J+6...,, J)0,
(,ij )

where 6..., =1 (0) for s; =s~ (s;Ws~). Attention was first

drawn to antiferromagnetic q-state Potts models when
renormalization-group analysis [14] indicated that, for
spatial dimensionality d above a lower-critical value of
d„a finite-temperature phase transition occurs, with
d, = 2.8 .for q =3. Subsequent Monte Carlo simulation
[15] confirmed the finite-temperature phase transition
and established the local ordering degrees of freedom,
namely, local sublattice densities such that one sublattice
is deficient in one of the three spin states and the other
sublattice is rich in this spin state. Since this symmetry
breaking can be achieved in six equivalent ways, the or-
dering involves the coexistence of six degenerate phases.
In fact, these six degenerate phases do coexist on the
low-temperature segment of the antiferromagnetic Potts
subspace in Fig. 1(h), as the two coexisting degenerate
phases of the antiquadrupolar phase and the four coexist-
ing degenerate phases of the ferrimagnetic phase coexist
at the first-order line on this segment [also see the densi-
ties in Fig. 2(h)]. Conversely, the finite-temperature
phase transition [14,15] of the antiferromagnetic Potts
model in d=3 dictates the occurrence of the ferrimagnet-
ic phase in the Blume-Emery-Gri%ths model. Momen-
tum-space renormalization-group e =4 —d expansion as-
signed [16] the n =2 universality class, to the transition of
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the antiferromagnetic three-state Potts model. However,
more recent Monte Carlo simulation [17] in d=3 indi-
cates a new universality class.

(6) For K/J & —3, a tetracritical point M occurs,
where four critical lines meet with diA'erent slopes [e.g. ,
Fig. 1(i)]. The ferrimagnetic-antiquadrupolar critical
line terminates, at a lower temperature, at another tricrit-
ical point (T"), beyond which the transition is first order.
Thus, this tricriticafity is totally inside ordered phases.
Finally, as E/J is made more negative, the tricritical
point T" moves to lower temperatures and the antiqua-
drupolar phase bulges to higher temperatures.

It is thus seen that a large variety of phase transition
phenomena are introduced to the simplest model incor-
porating both orientational and density degrees of free-
dom, when the latter are coupled by a repulsive interac-
tion.
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