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Ultrafast Electronic Disordering during Femtosecond Laser Melting of GaAs
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We have observed an ultrarapid electronic phase transformation to a centrosymmetric electronic state
during laser excitation of GaAs with intense femtosecond pulses. ReAection second-harmonic intensity
from the upper 90 atomic layers vanishes within 100 fs; reAectivity rises within 0.5 ps to a steady value
characteristic of a metallic molten phase, long before phonon emission can heat the lattice to the melting
temperature.

PACS numbers: 78.47.+p, 64.70.Dv, 72.80.Ey

Several years ago, Van Vechten, Tsu, and Saris sug-
gested that semiconducting materials with a diamond lat-
tice structure could be disordered by direct excitation of
the electronic system while the lattice modes remain vi-

brationally cold [1]. The diamond structure is stabilized
by bond charges in the tetrahedral sp bonds. Absorp-
tion of photons creates a free-carrier plasma by removing
electrons from bonding to antibonding orbitals. It was
suggested that a sufticiently dense photoexcited plasma
could weaken the lattice, giving atoms enhanced mobility
without significantly increasing their thermal energy.
This mechanism was called "plasma annealing. "

Several groups undertook experiments with pulses last-
ing 20 ps and longer to determine whether annealing
could take place without heating the lattice above the
melting threshold [2]. In disagreement with the plasma
annealing picture, it was found that a thermal model
could account for observed changes in the rellectivity of
laser-excited Si, Ge, and GaAs. The thermal model as-
sumes that the excess energy of photoexcited electrons re-
laxes rapidly to the lattice vibrational modes predom-
inantly by the emission of longitudinal optical (LO) pho-
nons [3,4]. When sufficient energy is absorbed to heat
the lattice to the melting temperature and to supply the
latent heat of fusion, the material melts. Kash, Tsang,
and Hvam measured the rate of LO phonon emission in

GaAs, finding that the time required for a hot electron to
emit a single LO phonon is 165 fs [5]. Consequently,
phonon emission was determined to cool the carriers and
heat the lattice in 2 ps [5], and melting proceeds with a
hot lattice.

Intense femtosecond laser pulses, however, deposit en-

ergy in the carrier system in a pulse shorter than the pho-
non emission time. With femtosecond excitation it may
be possible for the ions of the lattice to be driven to disor-
der directly by the electronic excitation, before phonon
emission can heat the vibrational modes appreciably.
Shank, Yen, and Hirlimann reported melting of silicon
after a 90-fs pump pulse as evidenced by reflectivity and
second-harmonic generation [6,7]. In a refinement of the
second-harmonic generation experiment, Tom, Aumiller,
and Brito-Cruz reported a loss of cubic order in crystal-
line Si only 150 fs after a 100-fs pulse [8].

In this Letter, we report time-resolved reflection

second-harmonic and reflectivity measurements on GaAs
showing a 100-fs decay time for the second-harmonic in-
tensity and a 200-fs rise time for the rellectivity.
Second-harmonic generation in crystalline GaAs is dipole
allowed in the bulk of the crystal; it arises from the asym-
metry in the bond between adjacent gallium and arsenic
atoms. Consequently, valence electrons are primarily re-
sponsible for second-harmonic generation; core and con-
duction electrons contribute very little [9,10]. The strong
second-harmonic signal that we detect monitors the 43m
symmetry of the electronic state in roughly the upper 90
atomic layers (13 nm), which is the absorption depth of
light at the second-harmonic frequency in GaAs. The
230-nm penetration depth in crystalline GaAs at 620 nm
assures that pumping is uniform over the absorption
depth of the second harmonic. Surface second-harmonic
generation, which arises from the broken symmetry at the
upper atomic layer, is at least 3 orders of magnitude
weaker than the contribution from the bulk, and there-
fore negligible. We observe a 100-fs drop in reAection
second-harmonic intensity that implies a transformation
to a centrosymmetric electronic state of the upper 90
atomic layers within 100 fs. The reflectivity rises to a
steady value characteristic of a metallic molten phase
within 0.5 ps, well before the vibrational excitation of the
atoms can reach the melting temperature, based on lat-
tice heating rates from phonon emission [5].

Pulses for the experiment are produced by amplifying
the output of a colliding-pulse mode-locked laser at 10
Hz in a five-stage dye amplifier. The amplifier uses prism
dye cells and relay imaging to produce 1-mJ pulses with
uniform spatial profile [11]. A grating pair compensates
the dispersion of the amplifier, yielding pulses with a
Gaussian 1je width of 100 fs centered at 620 nm (2.00
eV). The sample is a (110) GaAs wafer (Cr doped,
p& 7x10 Ocm) in air, with the in-plane [001] axis and
sample normal oriented horizontally. The amplified out-
put beam is divided into pump and probe beams with an
energy ratio of 300:1. The pump beam is incident along
the normal to the sample with its electric field parallel to
the [001] axis. This orientation prevents the pump from
generating second-harmonic radiation. After an adjust-
able delay the s-polarized probe beam strikes the sample
at an incidence angle of 45 . It is focused down to probe
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FIG. 1. Fluence dependence of the relative reflected second-
harmonic intensity (R) and reflectivity (Q) of a (110) GaAs
surface. The data were taken at 120-fs delay with 100-fs pulses
of 620-nm wavelength at an incident angle of 45'. The open
squares are the second-harmonic data divided by [(1 —R)/
(1 —Ro)l ' to correct for changes in reflectivity.
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FIG. 2, Time dependence of the relative second-harmonic in-
tensity (R) and reflectivity (Q) signals at a fluence of 0.33
J/cm . The curves are fits by exponentials yielding 1/e times of
90 fs for the second-harmonic decay and 170 fs for the
reflectivity rise. The peak at t=0 shows the duration of the
laser pulse.

only the central 10% of the pumped area. The orthogonal
polarization of the two beams eliminates the "coherent
artifact" seen in several pump-probe experiments where
parallel polarization was used [12,13]. The sample is
translated between shots to avoid cumulative damage
eff'ects. For each shot a computer records the intensity of
the incident pump and probe and the reflected fundamen-
tal and second harmonic. The signals are averaged and
normalized relative to the reflectivity and second-
harmonic intensity of unpumped crystalline material.
Data were collected at fixed time delays of the probe
pulse with respect to the pump pulse over an incident
fluence range of 0.05-0.35 J/cm .

Figure 1 shows the normalized reAectivity and second-
harmonic signals as functions of laser Auence at 120-fs
delay. Because the second-harmonic signal depends on
the probe intensity penetrating the interface, the second-
harmonic data are corrected for the observed change in
reflectivity (open squares). The second-harmonic intensi-
ty begins to drop at a threshold fluence of 0. 1 J/cm2. At
fluences above 0.2 J/cm the second-harmonic intensity
vanishes, even at this short time delay. The reAectivity
data show two interesting features. For Auences less than
0. 1 J/cm, the reflectivity drops below the unpumped
crystalline value. This dip can be attributed to a dense
free-carrier plasma created by the excitation pulse, which
reduces the real part of the index of refraction [6]. At
the highest Auence the reflectivity rise approaches 40%,
which agrees with the high level of ionization characteris-
tic of molten GaAs.

In Fig. 2 the second-harmonic and reflectivity signals
are shown as functions of time for a fluence of 0.33
J/cm . The data are fitted with exponential functions of
the form

/3A(t) =(Af —A;) [1 —exp[(to —t)/rg]],

where 2; and Af represent the initial and final values of
reflectivity or second-harmonic intensity, and r& is the
1/e time of the response. The fits give response times of
90 and 170 fs for the second-harmonic decay and re-
Aectivity rise, respectively. Note that the fit function has
not been convolved with the temporal profile of the probe
pulse; the actual response times are likely to be sig-
nificantly shorter. The results of performing exponential
fits to the data at diA'erent fluences are summarized in

Fig. 3, which displays response times as functions of
fluence. Above approximately 0.15 J/cm, the second-
harmonic decay time is constant at 100 fs. Similarly,
above 0.25 J/cm the reflectivity rise time is constant at
200 fs.

To what must we attribute this extremely rapid decay
in second-harmonic generation? Let us first consider
whether changes in the linear dielectric response of the
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FIG. 3. Fluence dependence of the 1/e response time of
second-harmonic decay (s) and the reflectivity rise (0). Each
data point corresponds to a fit to a full time trace, as in Fig. 2.
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material can account for the observed drop. Pump light
at 2.0 eV excites valence electrons from the light-hole,
heavy-hole, and split-ofl' valence bands to the conduction
band. These interband transitions are the dominant ab-
sorption mechanism for 2.0-eV photons. Based on the
band structure and density of states of the valence band
[14], the maximum attainable carrier density one can ex-
cite by linear absorption is less than 5% of the valence
band, or 8x10 ' cm . An incident fluence of 0.1 J/cm
is sufficient to produce this carrier density, assuming the
crystalline linear absorption constant. The presence
of such a plasma affects the linear dielectric response of
the material in two ways: through depopulation of the
valence states and through the dielectric response of the
plasma itself.

Valence-band depopulation acts directly to lower the
observed second-harmonic intensity by removing elec-
trons from the states responsible for the strong dipole sig-
nal. Depopulation effects would produce smooth, gradual
changes with increasing fluence. However, the Auence
dependence of the data (see, e.g. , Fig. 1) shows that the
second-harmonic response displays a threshold of 0. 1

J/cm above which the second-harmonic intensity van-
ishes rapidly with fluence.

At very high plasma density the plasma response dom-
inates the crystalline dipolar response, driving the real
part of the dielectric constant negative and causing an in-

crease in reflectivity. Even when the second-harmonic in-

tensity at 120 fs is corrected for the decrease due to in-

creased reflection, it drops more than 90% above 0.2
J/cm (see Fig. 2). Consequently, the observed drop can-
not be accounted for by changes in the linear dielectric
response of the highly excited material and must be attri-
buted to a transformation of the electronic state from the
noncentrosymmetric crystalline state to a centrosym-
metric one in which second-harmonic generation is dipole
forbidden.

Changes in the reflectivity further clarify the nature of
this transformation. Within 0.5 ps the reAectivity rises by
40% to a steady value that persists for more than 5 ps.
Similar reflectivity rises have been observed in nano-
second and picosecond melting experiments on GaAs and
other semiconductors as the material assumes the metal-
lic character of the molten phase [9,15]. Using a Drude
model and the measured value of conductivity for molten
GaAs [16], we estimate that at least 50% ionization of
the valence electrons is necessary to produce the observed
reflectivity rise (electron densities of order 10 cm ).
Our previous reflectivity measurements with a p-polarized
probe on a (100) GaAs surface [17] also rise to a steady
value consistent with a molten phase. Apparently, above
a threshold carrier density of -8x10 ' cm, the elec-
tronic system becomes ionized to a much higher degree
than the 5% expected from linear absorption.

Interestingly, the 200-fs 1/e time required for this
transformation is an order of magnitude lower than the 2

ps necessary for the photoexcited carriers to transfer their
excess kinetic energy to the lattice via LO phonon emis-
sion [5,18]. A crude estimate of the energy transfer rate
from carriers to the lattice, assuming the low-carrier-
density emission rate and a carrier density of 8x10 '

cm, gives 150 K/ps. This is more than an order of
magnitude too low to bring the material to the melting
temperature of 1511 K in the 0.5 ps it takes the electronic
response to stabilize (see Fig. 2).

At the threshold fluence of 0. 1 J/cm the energy densi-
ty deposited in the electronic system near the surface is
2.6 kJ/cm . This should be compared to the latent heat
of melting Q =2.83 kJ/cm, which gives an upper limit
for the free-energy change of the electronic configuration.
We conclude that at threshold sufficient energy has been
deposited for the electronic structural transition to take
place. At higher Auence, free-carrier absorption increases
the absorbed energy density above the threshold for melt-
ing. However, in the first 0.5 ps the ions cannot acquire
much energy by either phonon emission or electron-ion
collisions. It is likely that the high level of electronic ex-
citation severely weakens the interatomic bonds by dep-
leting the bond charges so that lattice disordering can
proceed under the impetus of room-temperature thermal
motion of the ions.

The ions in the lattice can move far enough during 0.5
ps to get from a 43m to an amorphous configuration in

space. At room temperature, the nuclear thermal veloci-
ty is roughly 300 m/s. If the high electronic excitation
were suddenly to remove the restoring forces on the ions,
they would move on average 0.15 nm in 0.5 ps, which is
greater than half the original bond length. Actually, the
ions will move over larger distances, because they are
pulled by the plasma excitations in an ambipolar diAusion
process. It is possible, then, for the cold crystal lattice to
disorder in 0.5 ps, even though the kinetic energy of the
ions remains close to its room-temperature value. Fur-
ther evidence of the rapid disordering of the crystal lat-
tice could be obtained from time-resolved x-ray-dif-
fraction experiments.

In conclusion, we have observed a sudden electronic
phase transformation in GaAs 100 fs after excitation with
an intense femtosecond pulse of fluence F) 0. 1 J/cm .
The strong dipole-allowed reflection second-harmonic sig-
nal generated in a 13-nm-thick layer near the surface
vanishes on this time scale. This drop, which cannot be
explained by pump-induced changes in the linear dielec-
tric response of the material, reflects a transformation to
a centrosymmetric, and most likely isotropic, electronic
state. The optical reflectivity rises with a 200-fs 1/e time
to a value that agrees with more than 50% ionization of
valence electrons in a metallic molten phase. At the
transformation threshold of 0.1 J/cm, the energy ab-
sorbed by the electronic system is approximately equal to
the latent heat of melting of crystalline GaAs. Further-
more, the transformation proceeds long before phonon
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emission can raise the lattice to the melting temperature.
These results suggest that the crystal lattice is driven to
disorder directly by the high electronic excitation and
that atomic disorder occurs while the lattice is still cold.
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