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Quantum Dynamical Simulations of Nonadiabatic Processes: Solvation Dynamics
of the Hydrated Electron
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A new method for simulating nonadiabatic quantum processes is presented. It is suitable for transi-
tions which are not dominated by near crossing of potential surfaces. The method is applied to the cal-
culation of the radiationless transition rate of the hydrated electron from its lowest excited level to the
ground state. The results are consistent with recent experimental indications that this process dominates
the solvation dynamics of the electron in water.
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The evaluation of nonadiabatic (NA) transition rates
in realistic systems has always posed a serious numerical
challenge, associated with the fact that one is trying to
compute a strongly quantum process in an otherwise es-
sentially classical system. Most of the practical methods
used to date are based on the Tully-Preston [ll surface
hopping idea and are thus limited to NA processes which
are dominated by near crossings of adiabatic potential
surfaces. In many processes, e.g. , radiationless transi-
tions in large molecules or in impurity centers in solids at
low temperatures, the NA transition often occurs in an
extended range of phase space, and its rate is dominated
by a small Franck-Condon factor. In this Letter we
present a new method for calculating such rates. The
method is based on running classical trajectories on the
initial adiabatic potential surface (here these trajectories
are obtained from a mixed quantum-classical evolution
where the potential surface is evaluated along the trajec-
tory using the adiabatic simulation method [2]) and on a
semiclassical evaluation of the "golden rule" expression
for the NA transition rate.

The method is applied to calculating the radiationless
transition rate from the lowest excited state of the hy-
drated electron to the ground state. This application is
motivated by recent experimental results on the dynamics
of electron solvation in water [3,4]. These works indicate
that the formation of the fully hydrated electron goes
through at least one intermediate species. Using the sim-

ple kinetic model
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(where eq„„;t„,is the initially ejected electron and e„„is
the intermediate state), Long, Lu, and Eisenthal [4(b)]
have fitted their data with kl ' =180+40 fs and k2 '

=540~ 50 fs. Migus et al. [3(a)] have given different
estimates: k] ' =110 fs and k2 ' =240 fs. Also Long,
Lu, and Eisenthal [4(b)] have identified an isosbestic
point at —820 nm, indicating a process dominated by
two-state kinetics. Migus et OI. , while advocating the

two-state model, have not identified such a point. Finally,
Long, Lu, and Eisenthal [4(a)] report a 35% longer rise
time for the appearance of the solvated electron in D20
relative to the same process in H20. On the other hand,
Gauduel et al. [3(c)] report a very small isotope effect
(&p,p/r H,p —1.1) on these times.

These observations cannot be accounted for by either
molecular theories or by adiabatic molecular simulations.
Recent molecular theories [5] indicate that solvent relax-
ation during charge solvation is nonexponential, charac-
terized by time scales between the longitudinal (rt. ) and
the Debye (rD) dielectric relaxation times. In water
iL -300 fs and rD —10 ps. In contrast, numerical simu-
lations of both classical charge [6] and adiabatic electron
solvation [7] in water have shown that a substantial part
of the solvation process occurs on a time scale of 20-30
fs. Clearly, neither can account for the observation of the
intermediate state "e„,t."

Concerning e„„, it is reasonable to assume [4(b),7]
that it corresponds to the three closely lying lowest ex-
cited p-like states which carry most of the oscillator
strength of the 1.7-eV absorption by the fully hydrated
electron. If so, k2 of Eq. (1) is the averaged NA transi-
tion rate from these states to the ground state.

Webster and co-workers [8] have recently simulated
the NA transitions involving the higher states of the elec-
tron in water using the semiclassical theory of Pechukas
[9] (estimating k2 ' to be of order —1 ps). This method
is based on an iterative determination of the solvent tra-
jectories and is therefore highly CPU demanding. Its ap-
plicability when the potential surfaces involved are far
from each other throughout the process is unclear, since
it leaves open the choice of a coherence time beyond
which surface hopping is imposed on the mixed state evo-
lution. Space and Coker [10] have used a method recent-
ly proposed by Tully [11] for simulating transitions be-
tween the higher excited states of the electron in helium.
This method is potentially very useful but its applicability
for the present situation of extended NA interaction is

yet to be demonstrated.
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Our new approach is particularly useful in cases of
extended coupling between noncrossing surfaces. In es-
sence, we take advantage of the fact that in such situa-
tions, when characterized by large density of final levels,
the golden-rule expression for the rate is valid, and we
directly evaluate this rate. This method is somewhat
similar in spirit, though completely different in im-
plementation, to the semiclassical scheme used by Her-
man [12] for vibrational relaxation, and it supplements
other methods [1,8-11] which focus on populations and
coherences in the electronic states themselves.

Our method [13] is based on a direct semiclassical
simulation of the golden-rule expression for the transition

rate between two electronic states 1 and 2,

2~ e ""
kl —2 Z g i&It II 12f&l'&«i; —E2f) (2)1'i; Z)

where Z~ =g;e " laj) =lp &lg J& (a=1 2; j=&'.f)
are vibronic levels in the initial (a =1) and final (a =2)
states, respectively. p&t'ai are adiabatic electronic states
and g;~f~ are the corresponding vibrational states. The
nonadiabatic coupling is approximated by V]; 2f
=X(M/) '&gi;lP/'&PilP/lgz&lg2f&, where l goes over all
nuclei (of mass Mt) and Pt are momentum operators.
Equation (2) is equivalent to

k, ,= Ct C(t),
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w here Ft =6 '&p~lP/i/2) and where H~ and Hz are the
nuclear Hamiltonians corresponding to the electronic
states 1 and 2, respectively. The vector function F is re-
lated to the expectation values of the force acting on the
nuclei by the electrons,
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Equation (3) is the starting point for our simulations. In
these simulations mixed quantum (for the electron) and
classical (for the water molecules) trajectories are gen-
erated using the adiabatic simulation method [2] with the
electron confined to the lowest excited state. We use the

RWK2-M (flexible) water potential and the electron-
water pseudopotential derived by Barnett et al. [14]. As
in our previous work [2,7(a), 15], the adiabatic quantum-
classical dynamics is described within the time-dependent
self-consistent-field approximation. The simulations were
done on a cluster of 128 water molecules with an interior
excess electron which was seen [15(a)] to represent quite
we11 the electron in bulk water. The simulation yields the
classical coordinates and momenta as well as p~, pq, E~,
and E2 (thus F/) along the classical trajectory.

Our semiclassical calculation of the integrand in Eq.
(3b) is based on the observation that close to the classical
limit it can be approximated by

C(t)= QF/*(R ' (t)) vt"'(t)F/(R (0)) v/ (0)J(t)
l T

(sa)

(5b)

where v=P/M, &)T denotes thermal average, and Ri'i(t) and v ' (t) (a=1,2) are classical positions and velocities
evaluated on the electronic surfaces a, starting from initial positions and velocities associated with g];. For the latter we
take a product over the classical atoms of frozen Gaussians [16] whose time evolution follows the classical trajectory.
Defining

Gt' (Rt, t) =(at/n) exp[ —
2 atlR/ —R/' (t)l +(i/6)P ' (t) [R/ —R ' (t)]j (6)

we have in this approximation [16]

e
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and where the index a denotes classical propagation on the potential surface a. The choice of the parameters ai is dis-
cussed below.

The justification for this approximation is that J(t), which describes two wave packets moving on the difl'erent adia-
batic surfaces and coming out of overlap, relaxes extremely fast, in times r —15 fs (see below). On this time scale the
atoms do not move far enough to explore the anharmonicity of their local environment and a frozen-Gaussian approxi-
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mation is valid. Note that the smallness of z, resulting
from the fact that many degrees of freedom contribute to
(Sb), is consistent with the assumed validity of the
golden-rule expression.

The calculation of k ~ 2 proceeds as follows. At
-75-fs intervals along the excited-state adiabatic trajec-
tories we start, using the instantaneous position and mo-
menta, adiabatic classical trajectories on the ground
state, and evolve them for —10 fs. J(t) is calculated
from
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Averaging over many such short trajectories yields the
thermal average, Eq. (Sa).

Now consider the widths of the Gaussian packets. To
eliminate the arbitrariness in their choice as much as pos-
sible we have compared the result of the present approxi-
mation to the exact evolution of the correlation function
C(t) for the exactly solvable case of two identical, hor-
izontally shifted harmonic potential surfaces. The re-
quirement that the two results are identical for short time
(tot «1) and high temperature (@to«kT) leads to

a =6mkT/h —(0.16kth)

where X,h =(2+6 /mkT) ' is the thermal de Broglie
wavelength. In fact, we have found that our results are
almost insensitive to the ehoiee of a for 0.011th
& a t & k, h (see Fig. 2).

It is important to note certain assumptions in our
method in the context of its present application. First,
the validity of a classical or even a semiclassical approxi-
mation for the hydrogen atoms is not clear, though the
short-time dynamics relevant to the evaluation of k]
makes it plausible. Second, the expression (3) for k~
is based on the assumption that the NA process proceeds
from a thermal distribution of initial states. In view of
the short times involved this cannot hold exactly (but pos-
sibly holds for the solvent degrees of freedom closest to
the relaxing electron because of their shorter [7] adiabat-
ic relaxation time). Finally, in the calculations reported
below we have taken into account only the lowest of the
three excited p-like states of the solvated electron. Since
the higher p states are expected to relax more slowly (in
view of the larger electronic energy gap), the relaxation
time reported below may be a lower bound.

In the present calculation we have made one more ap-
proximation (which may be relaxed at the cost of a some-
what bigger computation); using the fact that J(t)
decays very fast, we replace Eq. (Sa) by C(t )
=gt([Ft(R(0)) vt(0)] )T(J(t))T. This amounts to the
Condon approximation, expressing vibronic coupling by a
product of a Franck-Condon factor (J(t)) and an elec-
tronic-nuclear term ((F v) ). Calculations which avoid

TIME (FS}
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FIG. I. The correlation function J(t), Eq. (8), averaged over
initial nuclear positions and momenta, for H20 (solid line) and
D20 (dashed line). The widths used here are X =a
=0.16klh.
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FIG. 2. The nonadiabatic rate for the transition from first-
excited state to ground state of the electron in H20 (solid line)
and DqO (dashed line), as a function of log~o(k/4h).
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this approximation are currently underway.
Figure 1 shows the correlation function J(t) for the

electron in H20 and 020 at 300 K. These results are
average's over fifteen trajectories, using the same initial
conditions (with scaled velocities) for the HqO and D20
simulations. J(t) practically vanishes at t=lS fs, and
shows only a small isotope eAect. The resulting rate,
however, shows a bigger isotope efrect due to the nuclear
velocities in the (F v) terms. Figure 2 shows the nonadi-
abatic rate k~ 2 as a function of the frozen-Gaussian
width X. The insensitivity of the results to this width, for
X/X, h & 1, indicates that the proposed semiclassical evalu-
ation of Eq. (2) is reliable.

Because of the small number of trajectories used in
these first calculations, the absolute values for the rates in
Fig. 2 (—120 fs for H20 and 220 fs for D20) indicate
only order of magnitudes, with error margins estimated at
30%-40%. Still, comparing these rates with those ob-
tained from adiabatic simulations of electron solvation in
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water [7] indicates that this NA relaxation of the lowest
excited p-like states may be the rate-determining step in

the formation of the fully solvated electron, supporting
the identification of these state(s) as e„«of Eq. (1). The
relaxation times from Fig. 2 are shorter than those ob-
served in Refs. [3(a)] and [4(b)] which are themselves
con]]icting (240 and 540 fs, respectively). The reason for
this may be our use of the Condon approximation and the
fact that we considered only the lowest excited p-like
state. Qf more concern is the relatively big isotope eA'ect

( —1.8) found in our simulations which is larger than that
seen experimentally (1.1 and 1.4 in Refs. [3(c)] and
[4(a)], respectively). More work is needed in order to
determine whether these discrepancies result from our
statistical errors or from deficiencies in the electron-water
interaction pseudopotential (which was determined [14]
by fitting with quantum chemistry calculations in the
ground state but is used here to run trajectories on the
excited-state potential surface).

In summary, we have presented a new semiclassical
simulation method for calculating nonadiabatic transition
rates in condensed phases using a mixed quantum-
semiclassical representation of the electron-nuclear sys-
tem, and within second order in the NA coupling. The
method is useful particularly when other methods either
fail or are very inefticient —in situations where the transi-
tions are not dominated by near-crossing events. Appli-
cation to the electron-water system indicates that the NA
solvation process is indeed much slower than the adiabat-
ic one, and will therefore be rate determining, thus sup-
porting the two-state solvation picture suggested by the
experimental results [3,4] and by recent theoretical calcu-
lations [8].
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