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From a new mathematical identity and by using the fractional difference between the momentum of a
roton and the momentum at the bottom of the roton minimum as a small expansion parameter, a first-
order perturbation treatment of the roton-vortex interaction is developed. The resulting analytic expres-
sions for the distribution of transverse momentum transfer, in terms of elliptic integrals, are shown to be
in excellent agreement with recent computer-simulation results of Samuels and Donnelly and are con-

venient for computing the total momentum transfer.

PACS numbers: 67.40.Vs

Since the pioneering work of Hall and Vinen [1], the
interaction of rotons with lines of quantized vorticity has
received considerable attention. Because of the long
range of the hydrodynamic vortex field, Lifshitz and Pi-
taevsky [2] noted that the motion of the rotons could be
visualized in terms of wave packets and that consequently
the transfer of momentum from a vortex line to the ro-
tons could be calculated by a quasiclassical treatment of
the roton trajectories. This method was subsequently em-
ployed by Goodman [3]. Following this same approach,
Sonin [4] reported a detailed computation of the total
momentum transfer by a summation over straight-line
trajectories. Hillel [5] subsequently proposed a more
direct computation by means of an integration over the
hydrodynamic field itself, without the intermediary of the
trajectories. Recently, Samuels and Donnelly [6] have
presented the results of computer simulations of the actu-
al quasiclassical roton trajectories, without explicitly us-
ing the straight-line approximation. Their Fig. 2, repro-
duced here as Fig. 1, shows the distribution of the frac-
tional momentum transfer as a function of impact param-
eter b (in A). Our purpose in this note is twofold: (1) to
reexamine a shortcoming of the Hillel approach and to
demonstrate by means of a mathematical identity how
the Hillel method, when corrected, is equivalent to the
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FIG. 1. Fractional transverse momentum transfer vs impact
parameter (in angstroms) from the computer simulations of
Samuels and Donnelly (Ref. [6]). The circles are calculated
from the analytic expressions of Egs. (12a)-(12c) for the
characteristic impact parameter b* =150 A and for the expan-
sion parameter £¢=0.033.
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Sonin summation over trajectories; and (2) to exhibit, by
exploiting the existence of a small dimensionless parame-
ter of the problem, closed analytic expressions for the
transferred momentum distribution. The circles (Fig. 1)
are computed from our analytic expressions, as to be dis-
cussed below. The good agreement serves to provide in-
dependent corroboration of the Samuels-Donnelly results
and to confirm the reliability of the first-order perturba-
tion approach.

From the standard Landau expression H(p)=(p
—p0)2/2p + A for the momentum dependence of the ro-
ton energy near the minimum A, one obtains for the
quasiclassical roton velocity,

=8H _P~Po (1)
op u

The vector velocity V is in the direction of the momentum
vector p. This velocity specifies the roton motion relative
to the local superfluid flow, of velocity u. The resultant
roton velocity is V+u. By Galilean covariance, the local
superfluid velocity shifts the roton energy by U =p-u.
Conservation of the roton energy E, measured relative to
A, gives

14

E=‘L2LV,-2=%V2+U=const, )
where we have employed Eq. (1) to eliminate the local
momentum in terms of the velocity. The initial velocity
of the roton, far from the vortex, is ¥;, corresponding to
the initial momentum p;. By means of the constraint ex-
pressed by Eq. (2), we can regard the space dependence
of V as providing the same information as that provided
by the potential field itself. The local force on the roton
is therefore F= —gradU=uV gradV. Introducing the
line element ds of the trajectory by the time derivative
ds/dt =V, we find for the accretion of momentum in
traversing ds, by substitution of the local force from
above,

dp _didp _ 1o _
Is s di VF ugradV . 3

This is the essential mathematical identity, evidently not
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hitherto employed in this problem, which connects the
Sonin [4] and Hillel [5] approaches. In the former, the
ratio of the spatial variations of F and V along a trajecto-
ry is integrated over s, yielding the momentum transfer
for a given impact parameter b. Integration over b then
yields the total transfer cross section. In computing this
cross section, Hillel [5] sought to shorten the procedure
by integrating the local force, —gradU, over the entire
space, thereby obtaining a boundary integral over U. In
this form, the Hillel approach is not justified (as ap-
parently recognized by him) because of the exclusion of
the excluded circular region of diameter

p*=—HXPi , 4)
7(p; — po)?

where k is the quantized circulation. This is the doubly
cross-hatched region that is contained inside the contour
labeled I'ex in Fig. 2, consisting of points where U > E.
The other circles, labeled 3, 1, etc., are the potential-
energy contours U =E/2, E/3, etc., respectively. Here we
have introduced Cartesian coordinates with the vortex
line at the origin and have used the approximation
U=p-u=p;u,. The transverse momentum transfer
px(b) is calculated to first order in the small parameter
e=(p; —po)/p:; by integrating along the zero-order un-
perturbed straight-line trajectory parallel to the y axis at
x =b=const. The dashed lines at 45° to the coordinate
axes are the loci of points where F,=0. The lightly
cross-hatched shadow region in Fig. 2 that occurs outside
Tex for y>0 and 0<b <b* is compensated by the
reflected or “snap-back” [3] trajectories of the lower
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FIG. 2. Potential field set up by a vortex line at the origin for
a roton of impact parameter b moving parallel to the y axis.
The equipotentials are labeled by the ratio of the potential ener-
gy to the initial roton kinetic energy. The dashed lines labeled
F, =0 are the loci of zero transverse force. Rotons with impact
parameter in the range 0 <b <b*, with b* determined by the
initial kinetic energy, are excluded from the doubly cross-
hatched circle inside I'cx, as well as from the shadow region.
For a vortex lattice, the momentum transfer occurs within the
unit cell bounded by I'y, of radius r;.
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more heavily cross-hatched region, so that the entire x-y
plane is effectively filled up uniformly by straight-line tra-
jectories, except for the classically forbidden region in-
side Tex.

Although our ultimate interest is the interaction of a
roton with a vortex lattice, it is convenient to consider
first the scattering of a roton by an ideal isolated vortex
line of zero core radius. This requires integrating over
the unbounded interval — oo <y < oo, which yields

pe®) = f_ay3- )

I
x=b

where the “X” in the integral sign indicates omission
of the excluded region (x—b%*/2)2+y2<b*?/4. By
Stokes’s theorem, the total transfer is found to be

f:cpﬁc(b Ydb=p f:o f:o dx dy%—

=u ﬁ_ody V—uﬁr“dyV. (6)

In Hillel’s version of the double integration, U would
occur in the integrand instead of ¥. In our version, I is
the locus of the classical turning points, where V' =0, so
that the last term in Eq. (6) vanishes identically. The
remaining integration is carried out at large distances
from the origin, over the contour I'y. This contour corre-
sponds to the “slit” geometry of Hillel [5], for which the
ratio of breadth in the x direction to that in the y direc-

tion is vanishingly small. Far from the origin,
U =p;u, KE, which permits the expansion
1/2
v=vi-2u| =v-YL=y-—L_, @
H Ing Pi —Ppo

where we have substituted from Eq. (2). The closed path
integral over the constant V; vanishes, while the integra-
tion over u, yields the quantized circulation «, by virtue
of the slit geometry. The total transfer cross section is
therefore, in terms of the characteristic length of Eq. (4),

*® upi HUpi
<b)db=— —— u,dy=——"—"—Qu-dl
f_mp Pi—po ﬁo y ay p;“poﬁ
HKDi
= = —2(pi—po)b*. 8)
Pi —Po TP po

In terms of the dimensionless variables f=b/b* and
7 (B)=m.(b)/pi, Eq. (8) becomes

S me@rap=—rs. ©)

Because U vanishes identically along the g =0 trajectory
passing through the origin, the total contribution of all of
the negative impact parameters (region 1 of Fig. 2) is
readily found to be

0
f_wﬂx(”(ﬁ)dﬁ=—%7r8, (10a)

with an equal contribution coming from the integration
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over all of the positive impact parameters. By means of
an elementary integration along the B=1 trajectory
(x=b™*), one finds for the separate contributions of re-
gions 2 and 3,

fol P (B)dB=—2¢

and

(10b)

S xP@dp=— L ms. (100)

To find the full B dependence of the momentum
transfer we taken the x differentiation in Eq. (5) outside
the integral to obtain

sC - a e
3 (ﬂ)—a—ﬂﬁﬁmdn

_, 12
[1~—E——2} —1]‘ (1)
1+n

The integration can be accomplished in terms of the com-
plete elliptic integrals (details to be presented elsewhere
[7]) yielding for the intervals 8 <0,0<g<1,and 1 <p,

M(g)=g—2B"1 p 1
Ty (ﬂ) e(ﬂz—ﬁ)l/z [ I_B
+2:(0 -~ H"2E|—L || (12a)
€ B m] a
P (B) =8~ 2K (VB) —2E(VB)], (12b)
and
n§3)(/3)=e(2—ﬂ*‘)K[7lb,—]—2eE 7‘_{3—] (12¢)

respectively.g These functions are plotted versus 8 in Fig.
3 and are also exhibited by the circles in Fig. 1. The
good agreement of the circles with the Samuels-Donnelly
computer results [6] reproduced in that figure confirms
the reliability of the first-order analytic treatment pre-
sented here.

Although noted by Hillel [5], it seems not to be gen-
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FIG. 3. Transverse momentum transfer z3, in units of the
initial momentum, vs B=5b/b*, the reduced impact parameter.
The small perturbation parameter ¢ is the fraction by which the
initial roton momentum differs from the momentum at the ro-
ton minimum.

erally appreciated that the integrated effect of the roton-
vortex interaction is strongly dependent on the shape of
the region of integration. This is because of the long
range of the vortex velocity field, whose strength varies as
u=(x/2m)(x2+y?) 2. The shape dependence of the
line integral that occurs in Eq. (8) can be illustrated by
studying the function

f(y)E%ﬁruydy,

defined for an elliptical contour I'), where ¥ is the ratio of
the x diameter to the y diameter. By an exchange of the
coordinates we obtain

(13)

_ 1 1
fly l)=?§r7_.uydy=_,c—§r,u"dx' (14)
The sum of Eqs. (13) and (14) is
SO+ =2 wdx+u,dy)
(15)

=—Qu-dl=1,
K

a functional relationship that requires f(y) — 5 to be an

odd function of Iny. Actual computation for the elliptical
contour gives f(y)=(1+7y) "', The scattering was cal-
culated for the slit region, for which y=0 and f(0) =1.
The momentum exchange between a roton and an indivi-
dual vortex of a vortex lattice occurs in a symmetrical re-
gion, for which y=1 and f(1)= 7. The resulting in-
tegrated strength is

J:ymnx(ﬂ)d =— Ire,

reduced by a factor of 2 relative to the scattering result of
Eq. (9). The shape dependence introduces an additional
impact-parameter dependence of the momentum transfer
at the much larger length scale of the vortex lattice con-
stant. The Wigner-Seitz type approximation of a circle
of radius r; for the unit cell leads to the difference

™ (B) —a(B) =eb* /r}) (rF—b2) 2,

(16)

an

It is readily verified that integrating over Eq. (17) ac-
counts for the difference between Egs. (9) and (16).

The rotons that follow the reflected or snap-back [3]
trajectories of region 2, for 0 < g <1, have final velocities
in the negative y direction and final momenta reduced by
2(p; — po) =2¢p;. Therefore the ratio of the x and y com-
ponents of the transferred momentum is n/4.

We have used the present first-order approach (with
details to be provided elsewhere [7]) to obtain analytic
expressions for the trajectories themselves, in terms of in-
complete elliptic integrals, employing the observation by
Sanders [8] that angular momentum conservation in ad-
dition to energy conservation fixes the roton orbits by
quadrature.

To summarize, we have obtained analytic expressions
for the impact-parameter dependence of the roton
momentum transfer resulting from the scattering by an
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ideal vortex line of zero core radius. The excellent agree-
ment corroborates the recent computer-simulation result
and confirms the reliability of the first-order perturbation
method based on straight-line trajectories. A new
mathematical identity yields directly the total transverse
momentum cross section which is established to be 7/4
times the total cross section for longitudinal momentum
transfer.
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