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We study the change of quantum spectra under two types of perturbations. One of them corresponds
to the breaking of classical integrability and amounts to a crossover from level clustering to level repul-
sion. The second type of perturbation breaks time-reversal invariance; under conditions of classical
chaos the degree of level repulsion then grows from linear to quadratic. To characterize the spectral
changes we propose, for each type of transition, a distribution of nearest-neighbor spacings. Both of
these “‘generalized Wigner surmises” are rigorous for suitable ensembles of 2X2 matrices but prove reli-

able for dynamical systems with many levels.
PACS numbers: 03.65.—w, 05.40.+j, 05.45.+b

For several decades now fluctuations in the energy
spectra of atomic nuclei have been characterized by the
distributions of nearest-neighbor spacings. Typically,
those distributions are closely approximated by a simple
function which was proposed by Wigner [1] and which
has come to be called Wigner’s surmise. It is now under-
stood that Wigner’s original proposition applies not only
to nuclear spectra but also to a whole universality class of
dynamical systems. That class, referred to as “orthogo-
nal,” is characterized by Hamiltonians which (i) generate
globally chaotic motion in the classical limit and (ii) are
time-reversal invariant. Two other quantum-mechanical
universality classes are associated with global classical
chaos [2], the “unitary” and the ‘“symplectic” ones.
Wigner’s surmise for the orthogonal class has been ex-
tended to the other two classes. The three probability
densities read

Po(S) =(xS/2)exp(—S2x/4), orthogonal, (1a)
Py(S) =(325%/n*)exp(—S?4/n), unitary, (1b)
Ps(8)=(2"85%/3%7%)exp(—S264/9x), symplectic. (1c)

Here, as well as in all other spacing distributions below,
the energy scale is chosen such that the mean spacing is
unity. Because of the small-S behavior, P(S)~S?, one
speaks of linear, quadratic, and quartic level repulsion in
the orthogonal, unitary, and symplectic cases, respective-
ly.

The Wigner surmise in its three forms (1a)-(lc) is a

rigorous result for the Gaussian orthogonal, unitary, and
symplectic ensembles (GOE, GUE, and GSE) of Hermi-
tian 2 x2 matrices [1,2]. Their success for dynamical sys-
tems is amazing in two respects. First, Hamiltonians of
dynamical systems for the most part do not appear to be
random; in fact, the equivalence of spectral fluctuations
for random and ‘“‘nonrandom” Hamiltonians has been un-
derstood only recently [2-4]. Second, the number N of
discrete levels of a given spectrum must be large for the
spacing distribution to assume a reasonably smooth form,
while Egs. (1) are based on random matrices with V=2,
The spacing distributions for the Gaussian ensembles of
N x N matrices can be worked out for arbitrary N [2,4,5].
One finds that P(S) for the Gaussian ensembles depends
only weakly on the dimension V.

A fourth universality class we need to mention here
comprises classically integrable systems with two or more
degrees of freedom [2,6]. In that case levels do not repel
but rather cluster so as to give rise to an exponential dis-
tribution of nearest-neighbor spacings, P(S)=e ~S. In
that respect the levels behave like the uncorrelated events
of a Poissonian random process.

We shall here be concerned with Hamiltonians ““in be-
tween’’ universality classes,

HQ) =VfQ)Ho+1V), f=1/0+1?), 2)

where Ho and V belong to different classes [7]. For in-
stance, Ho might be time-reversal invariant but ¥ not so
restricted. As the coupling constant A increases from
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zero to infinity the Hamiltonian (1) executes a continu-
ous transition from one class to another. The path
through matrix space followed by H () given by (2) may
be called deterministic since for a fixed pair of “initial”
and “final” matrices Ho and V, the interpolating matrix
H () is uniquely determined for any value of .. Howev-
er, as we have shown in a previous paper [7], a certain
bundle of such deterministic paths is equivalent to a cer-
tain other bundle of Brownian-motion paths. The latter
bundle constitutes Dyson’s Brownian-motion model [8].
From our point of view, that model arises when a family
of Hamiltonians (2) is defined by the matrix density [7]

P(HM) =(6(H—Vf (Ho+AV))). 3)

Here the average (---) is over both Hy and V with
weights Po(Hp) and P« (V) chosen as the initial and final
densities for the transition in consideration.

We shall first treat the transition GOE— GUE. In
that case the averages in (3) can be carried out and yield
a Gaussian form for Po_.y(H,A). A lot is known about
the interpolating density Po— y(H,\) from the work of
Pandey and Mehta [9]. Unfortunately, however, no
explicit form is available for the spacing distribution
Po_.y(S,A) for large N. It is only for N=2 that a
closed form of the interpolating spacing distribution can
be worked out,
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FIG. 1. Gradual breaking of time-reversal invariance for a
succession of values of the symmetry-breaking parameter K or
A. The curves describe spacing distributions through the func-
tion A/(S) defined in the text. [Rugged curve: kicked top ac-
cording to (5); smooth: optimal generalized Wigner surmise
(4); dashed: completely broken symmetry according to (1b).]

Po_u(S M) =[5 Q+A)12D(\)2Se ~SPW21f[SD(A)/A],

Do) = | 2+

V2

As it must, this distribution interpolates between (1a) for
A =0 and (1b) for A— oo,

The derivation of (4) is an elementary task since for
N =2 the density (3) depends on H through only four
real variables. Two of the latter may be chosen as the
spacing and the sum of the eigenvalues of H; the remain-
ing two as the angles defining the unitary transformation
which diagonalizes H. By integrating out the last three
variables we arrive at (4).

As already pointed out above, the limiting forms of
the interpolating density (4) at A =0 and A — oo give ex-
cellent approximations to the spacing distributions for
“large” (N>>1) energy spectra of autonomous dynamical
systems of the appropriate symmetries. We should add
that the distribution of quasienergy spacings of periodi-
cally driven systems are similarly well represented by
those limiting cases of (4). One would hope that our
Po—.u(S,1) also works for the (quasi) energy spectra of
dynamical systems with partially broken time-reversal in-
variance, provided the value of A is properly adjusted.

The hope just expressed is indeed born out by an inves-
tigation of the kicked top with the Floquet operator [2]

ipJ, iK\J2/2j iK,J2/2j
F =K /Je' i1 )
Here the J. , . are angular momentum operators, made

2

1/2
2 A V21
l——arctan |—= | — 3
T 2+A

4)

} |

dimensionless by referral to Planck’s constant A as a unit;
p, K1, and K, are dimensionless coupling constants. The
stroboscopic motion generated by this Floquet operator
conserves the squared angular momentum, (J)2=j(j
+1), where the quantum number j may take on integer
or half-integer values. For fixed j, the Floquet operator F
may be represented as a (2j+1) x(2j+ 1) matrix. In the
classical limit, attained for j— oo, the motion is globally
chaotic if at least two of the three coupling constants take
on values of order unity. As long as one coupling con-
stant vanishes the kicked top has a time-reversal invari-
ance, [T,F]1=0, and (for integer j) F then is a member of
the circular orthogonal ensemble (COE) [2]. As the
third coupling constant is switched on, time-reversal in-
variance is broken and F crosses over into the circular un-
itary ensemble (CUE).

Figure 1 describes the gradual breaking of time-re-
versal invariance for the kicked top. The series of graphs
refers to a sequence of values of K, while K| and p are
kept fixed (p=1.642, K|=14.5). Each rugged curve
represents a spacing distribution for the quasienergies of
F with j=700. For the sake of convenience we have plot-
ted AI(S) =[§dS'AP(S'), where AP(S) is the difference
of the numerically obtained spacing distribution of the
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top and Wigner’s surmise (la). The smooth curve close
to each rugged one also depicts such a difference AI(S),
with the spacing distribution of the top replaced by the
optimal interpolating distribution (4); optimized is the
value of A, by minimizing the integrated rms deviation
between the rugged AI(S) and the one based on (4) and
(1a). Figure 2 displays the optimal integrated rms devia-
tion just mentioned as a function of the coupling constant
K,, as the full curve with the label GWS—Top. That
curve is meant to show that the generalized Wigner sur-
mise (4) remains as good an approximation to the data
for the top throughout the transition as it is for the limit-
ing cases (1a) and (1b) at, respectively, K, =0 and K,
large. Figure 3, finally, shows that the optimal value of A
is related to the coupling constant K as A~K?%; the slope
of the curve is consistent with X/K22~N3/2~j3/2. This
relation between A, K,, and N is not fully understood
right now. It is important to realize, though, that the K,
scale on which the symmetry breaking becomes manifest
is ~N —3/4, i.e., very small for large V.

Of great interest are transitions from level clustering to
level repulsion, where the spacing distribution changes
from the exponential e ~S to the form characteristic of,
say, the GOE. Several interpolating distributions have
been proposed [10], and we shall now add one more.
Ours will be based on a certain ensemble of random 2% 2
matrices. We again start from Hamiltonians of the struc-
ture (2) and proceed to the family (3). The final matrix
density P(V') is now taken from the GOE of 2X2 ma-
trices while for the initial one we assume the ‘“Poissoni-
an” density of real symmetric 2X%2 matrices

Pp(H) = {(trH)?*—4detH} —1/2, —(trH)?
xexp{—[(trH)>—4detH] ="/} . 6)

irmsdev
1.0
: GOE-To
.51 i
0 E\vﬁ/‘\_/x«//x\wfw\\:\:;\:—:\_/\_,_ . .
. GWS-Top
o .05 10 15 20 %

FIG. 2. Integrated rms deviations between the level stair-
cases of the kicked top and the optimal generalized Wigner sur-
mise (4) (labeled GWS—Top), plotted against the symmetry-
breaking parameter K,. For reference, the analogous deviations
between the top and the GOE and the GUE are also shown.

The latter ensemble is easily seen to imply an exponential
distribution of the spacing between the two eigenvalues.
Again, the averages in (3) can be done explicitly. The re-
sulting matrix density now depends on H through three
real variables, Hy), Hj,, and H,;. By a suitable double
integral we arrive at the spacing distribution, which can
be expressed in terms of the Bessel function 7o(x) and the
Kummer function U(a,b,x) as

Pp_.o(SA) ={Su(r)*/Mexpl—u(r)25%/403

x fo T dee ~ETB Y (ESUOIM) 1)
u) =VrU(— L ,0,A2).

Of course, A =0 pertains to the exponential e ~S while the
Wigner surmise (1a) is approached for sufficiently large
values of A. For all intermediate values of A we encounter
linear repulsion, P(S,A)~S, at small S; the slope de-
creases monotonically as A grows.

We have tested the reliability of our proposition (7) for
large matrices by diagonalizing random matrices of the
form (2) with various values of NV and A. The matrices V
were drawn from the GOE with (V,-§>=l/4N. A Pois-
sonian ensemble was realized by choosing diagonal ma-
trices Ho with independent diagonal elements drawn from
a Gaussian distribution with (Hg;) =0, (H§;)=1. In or-
der to compare the data with the interpolating spacing
distribution (7) we have used only the central parts
(width AE = 0.5 around E =0) of the numerically deter-
mined spectra. The latter precaution proved necessary
since fluctuations in different parts of the spectrum un-
dergo the transition from level clustering to level repul-
sion with different speeds [11]; that inhomogeneity of the
matrix ensemble in consideration is least pronounced near
E =0, where the level density depends most weakly on E.
To further reduce the effect of such inhomogeneities on
P(S) we have unfolded the spectra to unit mean spacing
throughout the range AE. In order to obtain smooth
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FIG. 3. Relation between the symmetry-breaking parameters
Kz and A.
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FIG. 4. Nearest-neighbor spacing distributions for the tran-
sition from a Poissonian ensemble to the GOE. [Histograms:
from central parts of spectra of random matrices; full smooth
curves: our proposition (7); dashed curves: data from the
wings of the spectra where the transition proceeds more slowly.]

spacing histograms we have collected 15000 levels within
the range AE for each value of A. With all these precau-
tions taken, we have found the numerically determined
spacing distributions to be faithful to our proposition (7)
to an amazing degree of accuracy, throughout the transi-
tion. Figure 4 illustrates our findings for N =500.
Unfortunately, we have nothing much to say about why
the spacing distributions of large spectra should be so
well represented by the spacing distributions of ensembles
of 2% 2 matrices, within as well as in between universality
classes. The power law P(S)~S? for the GOE, COE,
GUE, CUE, GSE, and CSE (circular symplectic ensem-
ble) can in fact be obtained from symmetry arguments
and nearly degenerate perturbation theory, i.e., by con-
sidering close encounters of pairs of levels [2,3]. The
Gaussian falloff of P(S) at > 1 for the GOE, GUE,
and GSE may be looked upon as a trivial consequence of
the assumed Gaussian nature of the respective matrix

densities. Given these behaviors for S <1 and S>> 1 one
appreciates the weak N dependence of the spacing distri-
bution as not counterintuitive, at least for the three clas-
sic Gaussian ensembles. As for the quasienergy spectra
with V>1 of Floquet operators from the three classic
circular ensembles one may argue as follows. The N
quasienergies can be visualized as the positions of parti-
cles on a circular ring. Imagine a nearest-neighbor spac-
ing .S much larger than a mean spacing. Any further in-
crease AS will then be resisted by a force ~AS, due to
the pressure of the remaining N —2 particles; the linear
(in AS or S) force entails a quadratic potential and thus a
Gaussian distribution of S. Incidentally, no such pressure
arises for classically integrable systems, since for these
the quantum levels tend to be independent from one
another, i.e., have no repulsive interaction.

We have enjoyed fruitful discussions with A. Pandey
and B. Dietz. Support by the Sonderforschungsbereich
No. 237 “Unordnung und grosse Fluktuationen” der
Deutschen Forschungsgemeinschaft is gratefully ac-
knowledged.

[1] C. E. Porter, Statistical Theory of Spectra: Fluctuations
(Academic, New York, 1965), p. 199.

[2] F. Haake, Quantum Signatures of Chaos (Springer, Ber-
lin, 1991).

[3] A. Pandey, Ann. Phys. (N.Y.) 119, 170 (1978).

[4]1 B. Dietz, dissertation, Universitdt-Gesamthochschule
Essen, 1991 (unpublished).

[5] B. Dietz and F. Haake, Z. Phys. B 80, 153 (1990).

[6] M. V. Berry and M. Tabor, Proc. Roy. Soc. London A
356, 375 (1977).

[7]1 G. Lenz and F. Haake, Phys. Rev. Lett. 65, 2325 (1990);
F. Haake and G. Lenz, Europhys. Lett. 13, 577 (1990).

[8] F. J. Dyson, J. Math. Phys. 3, 1199 (1962).

[9] A. Pandey and M. L. Mehta, Commun. Math. Phys. 87,
449 (1983); M. L. Mehta and A. Pandey, J. Phys. A 16,
2622 (1983); 16, L601 (1983); A. Pandey (to be pub-
lished).

[10] M. V. Berry and M. Robnik, J. Phys. A 17, 2413 (1984);
T. A. Brody, Lett. Nuovo Cimento 7, 482 (1973); E. Cau-
rier, B. Grammaticos, and A. Ramani, J. Phys. A 23,
4903 (1990); H. Hasegawa, H. J. Mikeska, and H.
Frahm, Phys. Rev. A 38, 395 (1988); F. Izrailev, Phys.
Rep. 5&6, 299 (1990).

[11] A. Pandey, D. Forster, and F. Haake (to be published).



