VOLUME 66, NUMBER 8

PHYSICAL REVIEW LETTERS

25 FEBRUARY 1991

Interface Tension in an SU(INV) Gauge Theory at High Temperature

Tanmoy Bhattacharya, Andreas Gocksch, Chris Korthals Altes,® and Robert D. Pisarski

Department of Physics, Brookhaven National Laboratory, Upton, New York 11973
(Received 30 October 1990)

For an SU(NV) gauge theory without dynamical fermions, at temperatures above the deconfining tran-
sition there are Z(V) degenerate vacua. The interface tension between distinct Z(V) vacua is computed

in weak coupling by semiclassical techniques.
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The properties of QCD at nonzero temperature are
relevant to nuclear collisions at ultrarelativistic energies
and for the early Universe. To date, most attention has
focused on bulk thermodynamics, such as the order of
possible phase transitions. To characterize finite or inho-
mogeneous systems, however, requires an understanding
of more than bulk properties. For example, if the theory
has degenerate vacua, then in an infinite volume the
ground state lies uniquely in one of them. In contrast, in
a finite volume bubbles of different vacua can form. The
evolution of these bubbles is a surface phenomenon, con-
trolled by the interface tension between the different va-
cua.

In SU(N) gauge theories without dynamical fermions,
there is a global Z(N) symmetry associated with the
center of the gauge group.! Because of confinement, at
zero temperature the vacuum is Z(N) invariant, but for
temperatures T above that of the deconfining transition,
the Z(N) symmetry is spontaneously broken,? and there
are NV degenerate vacua.

In this Letter we compute the interface tension be-
tween different Z(/V) vacua in the deconfined phase of
an SU(NV) gauge theory. The interface tension is related
to the probability for tunneling in an effective action,
which is computed semiclassically in weak coupling. As
dynamical fermions are left out, our results can only be
compared with the results of numerical simulations.?
Nevertheless, we feel that the computation of the inter-
face tension in an SU(/V) gauge theory is of general in-
terest on two counts. First, while the semiclassical calcu-
lation of interface tension is familiar,* its application
here is not. The effective action which applies to Z(N)
interfaces has an unusual form, and includes terms at
both the classical and quantum levels. Let g be the
gauge coupling constant, which without loss of generality
we can take to be positive. At small g, the action of a
solution to the classical equations of motion, such as an
instanton, is invariably proportional to 1/g2. Thus it is
natural to expect that the interface tension a also
behaves like 1/g2. Instead, because the Z(V) interface
is the action for the solution to effective equations of
motion, a is proportional just to 1/g. Second, as this
effective action is calculable from first principles, a is
equal to a pure number times 7'%/g, where the pure num-

ber depends only upon the N of SU(N), Eq. (7). Since
we use semiclassical methods, our result is only valid at
weak coupling, at tempertures high above the phase
transition. Thus our result in Eq. (7) is valid to leading
order in 1/g at small g; effects at higher loops orders
generate corrections to a of order g°, g I etc.

We work at a temperature 7 in the imaginary-time
formalism, so the Euclidean time runs from 0 to f=1/T.
The system is of length L, in the x and y directions, and
L in the z direction, with L, and L much larger than .
At nonzero temperature the fundamental order parame-
ter is the Wilson or Polyakov line, which is the path-
ordered trace

1
N
We can assume that the gauge fields obey strictly period-
ic boundary conditions. Since the time direction is of
finite extent, states with constant 4, are inequivalent.
By a global color rotation, any constant 4, can be rotat-
ed into a form in which it is a diagonal matrix:

(Ao)ij=(7tT/g)qi5,'j. (2)

Q(x)=—TrPexp [igj;ﬁAo()'c',t)dt] . 1

Ao is written in the fundamental representation, i,j
=1,...,N; adjoint indices are denoted by a=1,...,
N?—1. We parametrize the color vector ¢’ as

q'=2q/N+2§', i=1,... ,N—1,
3)

N—1
5 N N—1
i§l 9=0. 4 N 2q.
These coordinates obey the requirement that the trace of
Ao vanish.

With this parametrization of 4y we can understand
the Z(V) structure of the vacuum. The ordinary pertur-
bative vacuum is A9=0, @ =1. The other Z(/V) degen-
erate vacua occur when G°=0 and ¢ =, with j an in-
teger: then Q =exp(27ij/N). The N degenerate vacua
occur for j=0,1,...,N—1.

To construct a Z(/V) interface, we parametrize Ag as
in (2) and (3), but assume that the g”s are a function
of z. To interpolate between Q=1 at z=0 and Q
=exp(27i/N) at z=L, we impose the boundary condi-
tions g(0) =0 and q(L) =1, §'(0) =G'(L) =0.
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Using the ansatz of (2) and (3), the classical action is

2
- L 4n’T’?
_ﬁL'z_I:) dz_é_z_

Classically, there is no potential for Ao, and all fields with 4970 are degenerate. This degeneracy is lifted at the
one-loop level. To include these effects, we compute the determinant for one-loop fluctuations about a background A4¢
field. We treat the background A field as constant in z, and justify this after the fact. The calculation of the deter-
minant for constant 4, is standard,’ with a result independent of the choice of gauge fixing. For our parametrization of

dA§
dz

1
2

L
Sa=fa‘xt )2 =pL? [ az |4 4

i=1
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24
Squ=trln{— (8o+glAy, 1N?2—-93% =ﬁL,2LH—3—Z—

where the potential V(x)=I[x]12(1 —[x])?, with [x]
=|x|modi. The Z(N) symmetry of the vacuum is now
manifest, for when the Wilson line @ =exp(2rij/N), the
quantum action vanishes: Sq,=0 at §'=0 and g =.
These points are absolute minima of the potential, since
with other choices of §' and g, Squ>0.

To calculate the interface tension, we construct an
effective action as the sum of the classical and quantum
terms, S¢ and Sq. Since the boundary condition in-
cludes §'(z) =0 at z =0 and L, we set §'(z) =0 for all z.
Our final result is an effective action in terms of the sin-
gle field g (z):

24NN =D T3
t

Ser=Sa+Squ=8L Serr
nSat ST AL e T S
2
[ ' ﬂ_ + 2 — 2
St fdz{ | +1g1( ~IgD) } ©)

2'=(N/3)'gTz .

For convenience, we have rescaled the z coordinate into
the dimensionless variable z'. With this form of the
effective action it is trivial to compute the action of the
interface.* Taking L — oo, we want the solution to the
equations of motion for S¢g which satisfies the boundary
conditions g(—o0) =0 and g(+ o) =1. This solution is
g(z') =exp(z')/[1 +exp(z')], with action Sig=7+.
Plugging this back in, we find that the interface tension
a, defined by Ser=pBLAa, is

a=4_(11’:i)_ﬂili o)
33N g

which is our final result.

Our derivation of a has glossed over several assump-
tions which need to be justified. In a semiclassical calcu-
lation, the path which dominates the functional integral
is that with minimal action. In color space our station-
ary point is very simple, just a straight line between g =0
and ¢ =1, with §’(z) =0 for all z. By (3), there are
N —2 independent §’s, so they only enter for N = 3. To
prove that this is the path with the least action, consider
the effective action analogous to Ser, Eq. (6), but now
including the kinetic energy for the § fields. Construct

i=1

Lj=

N—1 ) N—1 ) )
2 Vig—gH+ E]V(q”—cif)J, (%)

the energy for this action, which is a conserved quantity.
This energy vanishes, since at the end points both the ki-
netic and potential terms do. Using this, the action of
the relevant path is equal to 2fds[Vx(g,§)1'% where
Vit(q,g) is the total potential for g and g, and ds is the
path length in function space, ds’=dq*+X,;(dG’)>.
Obviously, our straight-line solution has the smallest
path length in 5. Further, in SU(3) one can show that at
fixed g the smallest value of V,(gq,§) occurs for §=0.
Since both the arclength ds and (V,y)'? are then
bounded from below by the straight-line path, this has
minimal action. Because of the complexity of § space,
we were not able to prove that the straight-line path has
minimal action for V= 4, although we suspect this is so.
Thus our result in (7) is only valid for SU(2) and
SU@3).

The really surprising feature of our derivation is that
we can start with Squ, which is computed for constant
Ay, and use it to compute the properties of the Z(V) in-
terface, which is certainly not constant in z. This is al-
lowed because the form of the stationary point is slowly
varying in z: The width of the solution is for z' of order
1, which in terms of the original coordinate z is 1/gT.
Hence for small g, the width is 1/g times the natural
length scale, 1/7T, and the interface is very broad. Con-
sider now what would happen if one computed the
correction to the one-loop determinant in (5) from
momentum dependence in the background A4 field. This
would give terms such as fdz g2(dA4o/dz)?, which repre-
sents wave-function renormalization for the background
fields. Using the properties of our solution for A4y, we see
that this only contributes to a through terms that are of
order g, vs 1/g in (7). In essence, each derivative d/dz
brings in a factor of the inverse width of the solution,
which is proportional to g.

The result in (7) is valid only for small g, to leading
order in 1/g. Expanding the effective action S to quad-
ratic order in fluctuations of g(z), followed by integra-
tion over these fluctuations, will produce corrections of
order 1 to a; at this order, it will also be necessary to
deal with the collective coordinates of the stationary
point and the like.* Corrections of higher order, such as
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FIG. 1. Comparison with data from Ref. 3. Open circles
represent the data from the Helsinki group for a 2x8x8x40
lattice. The solid circles are their preliminary unpublished
data on a 2x8x8x20 lattice. The squares are data from the
Boston University group on a 4X 16X 16X 32 lattice.

those of order g in a, will be far more involved to com-
pute, although calculable in principle. Certainly at order
g it will be necessary to sort out fluctuations in the back-
ground field 4 from those which produced the effective
action, Sgqy of (5), in the first place.

It is worth understanding the surprising appearance of
1/g, instead of 1/g2, for the action of the stationary
point. Suppose that one were not so clever, and started
with just the classical action, S of (4). The equations
of motion are those of a free field, d2q/dz2=0, so a solu-
tion which satisfies the boundary conditions is just
g=2z/L, with action Sq=1/g?L. Notice that this action
vanishes as L goes to infinity: This is not an interface,
but a smooth variation from one value of 4 to another.
Now compute the one-loop corrections to this solution.
To estimate their form we replace L times the potential
in (5) by [§dz times the potential. Since ¢ is uniformly
of order 1 over the integral, the result is of order L,
Squ=L. Thus at large L while the classical action van-
ishes, the quantum fluctuations diverge. The distance at
which the effects of the quantum fluctuations become
large is when Sq=1/g’L is of order Sq,=L, which is
L=1/gT. This is precisely the distance scale which
characterizes the width of the solution of the effective
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action, which incorporates both classical and quantum
effects. Thus for boxes which are very small in the z
direction, L on the order of 1/7, there is no true inter-
face, and we can use the classical action alone. Once L
is large, however, on the order of 1/gT, the effective ac-
tion derived above must be employed.

Our results can be compared with numerical simula-
tions on the lattice, Fig. 1. While the agreement is spec-
tacular, this may be fortuitous. The numerical simula-
tions were done with lattices which were only two lattice
spacings in the temperature direction; for such lattices
there may well be significant corrections to our result in
(7). These and related questions are under study.

We thank the authors of Ref. 3 for making their data
available before publication. This manuscript has been
authored under Contract No. DE-AC02-76CH0016 with
the U.S. Department of Energy. C.K.A. thanks the
Department of Physics, Brookhaven National Laborato-
ry, for its support.

@permanent address:  Centre Physique Théorique au
CNRS, Section 2, B.P. 907, Luminy, F 13288 Marseille,
France.

1G. °t Hooft, Nucl. Phys. B138, 1 (1978); B153, 141 (1979).

2A. M. Polyakov, Phys. Lett. 72B, 477 (1978); L. Susskind,
Phys. Rev. D 20, 2610 (1979); B. Svetitsky and L. G. Yaffe,
Nucl. Phys. B210 [FS6l, 423 (1982).

3K. Kajantie, L. Karkkainen, and K. Rummukainen, Nucl.
Phys. B333, 100 (1990); Helsinki Report No. HU-TFT-90-72,
1990 (to be published); S. Huang, J. Potvin, C. Rebbi, and S.
Sanielvici, Phys. Rev. D 42, 2864 (1990); J. Potvin and C.
Rebbi, Boston University Report No. BUHEP-91-0069, 1991
(to be published).

4V. Privman and M. E. Fisher, J. Stat. Phys. 33, 385 (1983);
E. Brézin and J. Zinn-Justin, Nucl. Phys. B257 [FS14l, 867
(1985); G. Miinster, Nucl. Phys. B324, 630 (1989); B340, 559
(1990).

5D. J. Gross, R. D. Pisarski, and L. G. Yaffe, Rev. Mod.
Phys. 53, 43 (1981); N. Weiss, Phys. Rev. D 24, 475 (1981);
25, 2667 (1982); R. Anishetty, J. Phys. G 10, 439 (1985); K. J.
Dahlem, Z. Phys. C 29, 553 (1985); J. Polonyi, Nucl. Phys.
A461, 279 (1987); S. Nadkarni, Phys. Rev. Lett. 60, 491
(1988); V. M. Belyaev and V. L. Eletsky, Z. Phys. C 45, 355
(1990); V. M. Belyaev, Phys. Lett. B 241, 91 (1990); Universi-
ty of Minnesota report, 1990 (unpublished); K. Enqvist and K.
Kajantie, Z. Phys. C 47, 291 (1990); K. Huang and J. Polonyi,
MIT Report No. CTP-1883, 1990 (to be published); J. Polonyi
and S. Vazquez, Phys. Lett. B 240, 183 (1990).



