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A novel random-matrix ensemble is introduced which mimics the global structure inherent in the
Hamiltonian matrices of autonomous, ergodic systems. Changes in its parameters induce a transition
between a Poisson and a Wigner distribution for the level spacings, P(s). The intermediate distributions
are uniquely determined by a single scaling variable. Semiclassical constraints force the ensemble to be
in a regime with Wigner P(s) for systems with more than two freedoms.
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The theory of random matrices has been used to de-
scribe various phenomena in condensed-matter physics,
atomic physics, nuclear physics, and the semiclassical
mechanics of nonintegrable systems. For example, these
properly describe the conductivity fluctuations in meso-
scopic systems' and the fine-scale spectral statistics of
nuclei, atoms, molecules, and classically ergodic Hamil-
tonian models.? If time-reversal invariant, some spectral
properties of such systems, e.g., the nearest-neighbor
level-spacing distribution P(s), resemble those of the
Gaussian orthogonal ensemble (GOE) for a wide variety
of examples. Actually, it has been shown that the GOE
only represents a special case in a large family of ensem-
bles which all have precisely the same spectral behavior.?
In other words, the GOE spectrum is quite insensitive to
modifications in the definition of the ensemble. Random
matrices with properties similar to those of Hamiltonian
matrices apparently form another subset of the same
large family of ensembles as the GOE. However, the
two subsets differ from each other in many ways. In par-
ticular, the global structure of semiclassical origin which
is inherent to Hamiltonian matrices is absent in the
GOE. While such differences are not reflected in the
spectral properties, they will affect the properties of

eigenstates which are not as robust.? In order to under-
stand both the mechanism responsible for the robustness
of spectral features and the properties of the eigenvec-
tors, it is necessary to examine the behavior of random

matrices which mimic the semiclassical structure of
Hamiltonian matrices. Accordingly, the purpose of this
Letter is twofold. First, we introduce an enlarged en-
semble which includes both the traditional GOE and
random matrices with Hamiltonian-like structure as sub-
sets (different from that of Ref. 3) and study some of its
properties. Specifically, we focus on checking whether or
not the new ensemble is compatible with our expectation

for the P(s). For a particular ordering of the basis, the
corresponding members of the new ensemble are banded.
Thus, we refer to this model as the banded random-
matrix ensemble (BRME). Its eigenstates are typically
localized. Second, we show that in the Hamiltonian-like
limit of the BRME its P(s) is the same as that of the
GOE and on average its eigenstates are extended. How-
ever, both of these conclusions hold only for systems with
more than two freedoms, d >2. When d=2 our argu-
ment is marginal and a more detailed understanding of
the relation between the BRME and the actual Hamil-
tonian matrices is required in order to determine the cor-
responding form of P(s). Moreover, due to its additional
structure, the BRME could lead to new predictions for
various properties of ergodic Hamiltonian matrices
which cannot be explained by the GOE.* The discussion
of such predictions, however, will be postponed for a fu-
ture publication.

Before we actually introduce the BRME, we give a
short description of the semiclassical correlation struc-
ture pf Hamiltonian matrices.> Suppose H=Hy+H,
and Hov; =E;v;. We use v; as the basis and arrange it in
increasing order of the unperturbed energies E;. In this
basis, H is a banded matrix, h;=E;8§;+{v;|H|v;).
That is, matrix elements which lie much further away
from the diagonal than a few bandwidths AE; are vanish-
ingly small, where

Zj(Ei_Ej)2|hij|2 —p2 {[Ho,H]13g}
Zj(;ei)lhij|2 {H3 —{H}?"

(AE;)?*= €]

and
{F(g,p)= Jdqdp F(q,p)SIE — Ho(q,p)]

is a microcanonical average. Moreover, [F,Glpp is the
Poisson bracket and the = sign denotes equality to

(2)
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lowest order in A, or, more precisely, the contribution
from zero-length classical orbits.® Equation (1) is a
consequence of the relation between microcanonical
averages and diagonal elements, h;={H}. Let us now
fix a classical range for E, (E4 E,), and truncate the
basis v; such that E; < E; <E,. The resulting block
spans a O(#°) range in E while the band size AE; is only
O(n) [see Eq. (1)]. Accordingly, except for a thin band
around the diagonal, all the elements of this block are
vanishingly small. This observation can also be formu-
lated in terms of numbers of rows and columns in the
Hamiltonian matrix by using the Weyl formula for the
density of states p(E),

p(E)=h [ dqdp S1E — Holg,p)]. 3)

We obtain that the size of the block is N=A ~¢ while
the size of the band is smaller, b=p(E)AE=h'"9 A
second semiclassical constraint on the H matrix concerns
its diagonal matrix elements. Since h; == {H}, and due to
the v,-basis ordering, these display on average a slow
(global) variation with E.

We now introduce the banded random-matrix ensem-
ble which, in contrast with the GOE, incorporates in a
simplified form the global semiclassical structure of
Hamiltonian matrices. The members of the GOE, #,
are N XN symmetric matrices with random, uncorrelated
elements, h;; =G(0,0+06;;), where G (u,v) is a Gauss-
ian distribution with mean u and variance v?. Since o
only determines the overall size of the matrix elements,
we set o=1. On the other hand, the matrices in BRME
are in addition exactly banded, that is, (h,-}) =0 whenever
|i—jl=b. Moreover, their diagonal matrix elements
have a mean which changes by a from one row to the
next, (h;;) =aid;;. For b= N and a=0 the BRME be-
comes equivalent to the GOE. Similar ensembles were
originally introduced by Wigner in the context of nuclear
physics.” Recently, Deutsch introduced the BRME as
an example of a closed quantum system with a large
number of freedoms which is ergodic.® Moreover, such
matrices also arise in the study of tight-binding models
with an external electric field for an electron on a disor-
dered 1D lattice.’

In order to further stress the analogy to Hamiltonian
matrices, we define the enlarged BRME. The latter in-
cludes all the matrices obtained from the BRME by per-
mutations of the basis in which the BRME itself is ex-
pressed. As in the case of a generic Hamiltonian matrix
the nonlocal correlation structure is hidden for most
members of the enlarged BRME. On the other hand,
the spectral properties of the enlarged BRME are pre-
cisely the same as those of the BRME itself. We there-
fore can restrict our study to the BRME without loss of
generality.

If N =o0 and b is finite, the eigenvalue equation for a
member of the BRME can be cast in a transfer-matrix
form. Consequently, it falls under the auspices of the

Furstenberg theorem which implies that the correspond-
ing eigenvectors are exponentially localized.!® Another
limit of the BRME, where NV is finite and a =0, was re-
cently studied by Casati er al.'' They found that
L/N=f((b?/N), where L is the average localization
length. The scaling function f(x)=Cx for small x
where C = 1 and saturates to 1 when x is large.

The most extensively studied spectral property of ran-
dom matrices is P(s), the distribution of spacings be-
tween consecutive eigenvalues S, where s =Sp(E). For
both the GOE and ergodic Hamiltonians, P(s) is very
well approximated by the Wigner distribution, P(s)
=(ns/2)exp(—ns?/4). The fact that P(0) =0 is a sig-
nature of the repulsion between levels. On the other
hand, integrable systems with d > 1 have been shown to
display no level repulsion; P(s) =exp(—s), the Poisson
distribution.'? For the BRME, if N =c and a=0, the
localization of eigenstates implies that the overwhelming
majority of eigenvalues have negligible repulsion. As a
consequence, the spacings are Poisson distributed. For
the ensemble studied in Ref. 11, a transition from a Pois-
son to a Wigner distribution was observed as the ap-
propriate scaling variable, x=b2%/N, was gradually in-
creased. In the following, we show that by varying «a
such a transition is also obtained for NV =o0.

We now turn to the study of the BRME with finite a
but very large NV. In particular, we attempt to quantita-
tively understand the behavior of its spacing distribution.
It is natural to assume that the local P(s), namely, that
restricted to eigenvalues with eigenvectors which are lo-
calized within L sites of each other, is of Wigner type.
On average, such eigenvalues correspond to diagonal ele-
ments which are located within L rows away of each oth-
er. Moreover, this local spectrum lies within some ener-
gy interval (64,6,) of width A6. When a =0, the spec-
trum of the BRME results from incoherently overlaying
a large number of local spectra and this leads to a Pois-
son spacing distribution. On the other hand, if a is
finite, the intervals (§4,6,) associated with individual
local spectra are shifted with respect to each other along
the energy axis. In particular, if La > A&, these inter-
vals do not overlap at all. In this case, the spacings of
one local spectrum are not altered by intervening eigen-
values from other local spectra and therefore the Wigner
distribution P(s) is preserved in the full BRME. In or-
der to characterize the intermediate situations where
0<La <A&, we define a new scaling variable y=La/
A&, which measures the relative strength of the two
mechanisms causing the spread in energy: (1) the a =0
natural width of the local spectrum, and (2) the amount
of a shift from one local spectrum to the next. The cen-
tral assumption of our description is that these two
mechanisms do not interfere with each other.'* Accord-
ingly, we assume that both L and A& are independent of
a; L=b%" and A6=+/b (see next paragraph for
derivation).'* Thus, y= ab % As either a or b grows,
the spacing distribution displays a gradual transition be-
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tween a Poisson and a Wigner form. In the process of
this transition the intermediate forms of the spacing dis-
tribution are uniquely determined by the value of y.

In order to gain additional insight into the behavior of
P,(s), we can further define the nature of the local spec-
tra. This is achieved by approximating the band of the
BRME with L XL blocks centered on the diagonal such
that the upper left corner of one block lies on the diago-
nal of the matrix and is adjacent to the lower right
corner of the next block. While ¢ =0 inside each block,
the average of the diagonal elements differs by La from
one block to the next. In the following, we refer to this
model as the block ensemble. Moreover, we assume that
the spacing distribution for each of the blocks is Wigner
type and the corresponding density of states is in the
form of a semicircle (as in the GOE). Since (A%2)=N !
x{(Tr#?2) (1 are the eigenvalues of %), an exact calcula-
tion of the semicircle width only implies counting the
nonvanishing matrix elements of #. For 1<Kb<KN,
AE=42b and therefore y=+a(b/2)¥% The local
densities of states form a periodic 1D lattice of partially
overlapping semicircles (the lattice constant is La). One
can use the approach of Gurevich!’> and Pevsner to
derive the theoretical P,(s) for the block ensemble.
Despite the various simplifications, the theoretical P,(s)
displays nice qualitative agreement with the P,(s) of the
BRME.

For an independent one-parameter characterization of
the intermediate forms of P(s) we use the Brody distri-
bution, P,(s) =Bs%exp(—xs'*9), where B=(14+¢)x
and x=T""9((2+¢)/(1+g)). While at g =0 this gives
a Poisson distribution, for g =1 it is Wigner. The Brody
formula was derived assuming an s? repulsion between
adjacent levels.'® In Fig. 1 we numerically test the va-
lidity of the one-variable scaling description for the spac-
ing distribution. We fit the Brody distribution to that
obtained by numerically diagonalizing 125 BRME ma-
trices with V=800 (see Fig. 2). To reduce finite-size
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FIG. 1. The scaling hypothesis g(y). The data points are
obtained from ensembles of 125 matrices with N =800 and
correspond to different bandwidths: 6=8 (+), b=10 (%),
b=12(0), b=14 (D).
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effects, eigenvalues corresponding to eigenvectors local-
ized less than L sites from eithér end are not included.
For y> 0.3, g clearly scales with y, g(y). While in the
N=co limit, q(0) =0, numerically we are faced with
finite-size effects. These lead to g(0) > 0 which in turn
is a consequence of having only a finite number of blocks
in each matrix. Moreover, one can easily show that the
finite-size effects start at y=y., = b2 where A§ becomes
of the same order as the energy spread of the entire ma-
trix, Na. Such effects can be accounted for with a two-
variable scaling function g (%,y), where X =L/N. Keep-
ing X fixed is equivalent to having a constant number of
blocks in each matrix. Notice that, in Fig. 1, X varies.
Numerical experiments in which X was kept fixed
(=10, N=556) were also performed. It was found
that the resulting g(y) curve precisely overlaps with the
b=12 curve of Fig. 1 and does so equally well for all
values of y. We should point out that the scaling behav-
ior of g is more robust than it might appear from our dis-
cussion. In particular, we have shown that L =5b2%g(y),
where y =ab*?, and g(y) =C for y<1 and g(y) =C,
xy "2 when y>1.'7 This implies that y= yg(y) and
therefore the assumption that L does not depend on a is
unnecessary.

Finally, we discuss the implications of the BRME
properties to autonomous, ergodic Hamiltonian systems.
Using Egs. (1)-(3) and 6 ===# @~ 17218 ¢ obtain that
y=h2"9 Notice that, y(c)=y(1)o~!. Accordingly,
in the limit A— 0 and for d > 2, y is diverging. In the
large-y regime, y=y ' and so y— 0. Therefore, the
semiclassically constrained BRME agrees with the GOE
with respect to the form of the spacing distribution.
Namely, both predict a Wigner-type P(s). As a matter
of fact, the semiclassical ergodic Hamiltonians are even
further away from the Poisson-Wigner transition than it
might appear from the previous argument. In the study
of the BRME we have implicitly assumed that the
finite-size scaling variable X is small. Semiclassically,
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FIG. 2. The P(s) distribution for one of the points in Fig. 1
(histogram) compared with the best-fitting Brody distribution
(dashed line) (y=0.4, b=10, ¢ =0.484).
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however, =k @~/ a5 well, and consequently L — N
when A— 0 and d > 2. Thus, to the extent to which the
properties of the BRME coincide with those of Hamil-
tonian matrices, localization is irrelevant for d > 2 and
h— 0. While the GOE leads to the same conclusion, we
stress that for the BRME this semiclassical limit is at-
tained in a nontrivial way which one should be able to
observe in actual Hamiltonian systems.

The d =2 case is semiclassically marginal and will re-
quire further study. Let us refer to (AE)? of Eq. (1) as
the second moment of h;;. All the higher moments are
also constrained by semiclassical expressions analogous
to that of Eq. (1).'® These can be thought of as addition-
al correlations which are not included in the BRME.
We expect that these will further enhance the localiza-
tion length in the case of Hamiltonian matrices such that
semiclassically L = N and y>>1 also when d =2.
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