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Molecular-Dynamics Approach to the Statistical Properties of Energy Levels
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The deformation of the energy-level spectra of quantum systems as a function of a control parameter
governing the strength of a nonintegrable perturbation can be determined by standard molecular-
dynamics techniques. The integration of Newton s equations of motion provides detailed information on
the spectral deformation when the classical system undergoes a transition from mostly regular to mostly
chaotic motion. This method is used to study the changes in the energy-level statistics and allows the
direct determination of the Brody parameter in the predominantly chaotic regime.

PACS numbers: 05.45.+b, 31.1S.+q, 33.10.6x, 34.10.+x

0=Hp+XV,

where Hp is a separable Hamiltonian and V is, in gen-
eral, a nonseparable perturbation. For the vanishing
control parameter X=0, the classical motion is regular
and the NNS statistics of the quantized system is Pois-
sonian. As the control parameter is increased, the classi-
cal dynamics undergoes a transition from mostly regular
to mos'. .ly chaotic motion. It has been found empirically
that the NNS statistics in the transition regime is
reasonably well described by a Brody distribution

P(S) =~S&exp( aS "&), — (2)

~here 5 is the NNS in units of the mean level spacing,
8 =(1+q)a, a =1 '+'((2+q)/(1+q)), and q is found
by fitting the "experimental" NNS distribution with a
distribution of the form (2). The Brody distribution in-

Investigations of fingerprints of classical chaos on the
quantum mechanics of seemingly simple nonintegrable
Hamiltonian systems' continue to attract an increasing
amount of interest. An impressive array of results on the
distribution of energy levels, on the nodal pattern of
wave functions, on the relation between unstable period-
ic orbits and scars of wave functions and level cluster-
ing, and on the quantum suppression of diff'usion in

periodically perturbed time-dependent quantum systems
has become available.

Statistical properties of energy levels, in particular the
nearest-neighbor-spacing (NNS) statistics, have proven
to be very sensitive to the dynamical properties of the
underlying classical system. Berry and Tabor proved
rigorously that, except for special cases (one-dimensional
systems and harmonic oscillators), the NNS distribution
for a classically regular system is Poissonian. For classi-
cally chaotic systems there is strong numerical evidence
that the NNS distribution for a real Hamiltonian system
follows the prediction by the random-matrix theory for
the Gaussian orthogonal ensemble (GOE), though a
rigorous proof is still missing.

Consider a generic two-degree-of-freedom noninte-
grable Hamiltonian of the form
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where x„(k) =e„(X) are the energy levels, and we have
assumed the coupling matrix V;„ to be real and the spec-
trum to be entirely discrete. Extensions to Hermitian
matrices and to the continuum' are straightforward.
Equations (3) follow from (1) by forming expectation
values and diIIIerentiation with respect to k. This set is
an obvious generalization of the Hellman-Feynman
theorem [Eq. (3a)] and will be referred to in the follow-
ing as Hellman-Feynman equations (HFE) of motion.
They describe the evolution of the energy levels under

terpolates between the Poissonian distribution (q =0)
and the Wigner (approximate GOE) distribution
(q =1). As k increases, q should (not always monotoni-
cally) increase from 0 to 1. A microscopic analysis of
the behavior of the Brody parameter q(k) appears to be
missing.

Intriguing qualitative explanations for the chaotic lim-
it (q =1) were given by Pechukas, Yukawa, ' and Ber-
ry'' treating the set of energy levels as an interacting
many-body system and invoking the notion of equilibri-
um statistical mechanics. The latter approach goes back
to Dyson's observation ' that diferent ensembles of
random-matrix theory can be mapped onto the equilibri-
um statistical mechanics of a one-dimensional Coulomb
gas on a circle at difI'erent temperatures embedded in a
two-dimensional space.

In this Letter we report on the first study of the evolu-
tion of the level statistics in the transition region between
the regular and chaotic limits based on the solution of
the well-known set of coupled ordinary differential equa-
tions
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Hp= g Hp, Hp =P; /2M;+ V~(r;), (4a)

and

V= —P~P)/m . (4b)

This system provides a simple model for the vibronic
motion of linear triatomic molecules and has been exten-
sively studied as a model for the quantum mechanics of a
classically chaotic system with two degrees of freedom. '

variation of the control parameter k completely. We
have developed a code to numerically integrate Eqs. (3)
for a large number of energy levels (presently up to 10"
levels). ' Our approach is directly modeled after mo-
lecular-dynamics (MD) calculations for classical
liquids. ' We identify k as "time" and (3) as Newton's
equations of motions for N particles with canonical coor-
dinates (x„,p„), each particle representing one energy
level. The initial conditions [x„(0),p„(0),V;„(0)] are
provided by Hp. The only nonstandard feature in (3) is
the additional degrees of freedom of Auctuating
"charges" V;„(k) described by Eq. (3c). We chose a
chainlike configuration where the position coordinates,
the energy levels, form an ordered sequence (x ~

& x2 & x„) which will be conserved because of the
singular repulsive forces between levels of given exact
symmetry. At the lower end of the chain (xi) we always
use open boundary conditions while at the upper end
(xz), suitably prescribed boundary conditions ' can
reduce errors which result from the truncation of the lev-
els n )N. Matrix diagonalization would correspond to
open boundary conditions also at the top of the chain.

In a standard MD calculation the propagation of en-
sembles is facilitated by the fact that the number of
N(N —1)/2 mutual interactions in the N-particle system
can be reduced to those within a reaction range of J
nearest neighbors provided the forces are suSciently
short ranged. The number of interacting pairs of parti-
cles is thus reduced from N(N —1)/2 to N)t J/2, where
J((N. Application of such a reaction window to the
HI E implies the use of a X-dependent self-adjusting
"banded" Hamiltonian matrix, which is crucial in gain-
ing computational speed. However, the forces in (3) are
short ranged only if V;„(A.) 0 as ~i

—n
~

&& 1. We
therefore find the convergence as a function of the reac-
tion range to be rather slow for individual levels (typical-
ly, 1=50); however, it is much faster for ensemble
properties. The present method monitors the deforma-
tion of the quantal spectrum continuously and is well
suited for identifying changes of the level distribution as
a function of the control parameter. We emphasize that
the present approach is fully quantum mechanical
despite its classical appearance.

As a model system for the eigenvalue dynamics we use
the Hamiltonian for two coupled Morse oscillators
with"

In (4), M; are the reduced masses for the two diatomic
pairs in the molecule, V; are the corresponding Morse
potentials, and m is the mass of the central atom. We
use the molecular parameters for H-C-C. However, in
order to improve the statistics we have arbitrarily re-
scaled 6 to t'i/3 thereby increasing the number of bound
states below the dissociation limit to 1485. The coupling
to the continuum is neglected.

Recently, Nakamura and Lakshmanan' have shown
that Eq. (3) constitutes an integrable Moser-Calogero
system with an internal complex vector space possessing
a complete set of constants of motion. Notions of equi-
librium statistical mechanics for the level distribution
implicitly invoking ergodicity (or even mixing) appear,
at first glance, hardly justified. Yukawa ' suggested that
ergodicity is restored due to the introduction of boundary
conditions imposed on (3) which reduce the number of
constants of motion. However, since boundary condi-
tions are characteristics of the model-dependent trunca-
tion of the Hilbert space rather than of the Hamiltonian
itself, it is unsatisfactory to rely on model-dependent ap-
proximations in order to approach an "equilibrium" level
distribution which is considered to be generic for nonin-
tegrable systems. We therefore use in the following the
MD method to test the equilibrium-statistical-mechanics
hypothesis.

We note first that the canonical equations of motion
for the 2N phase-space coordinates (x„,p„) are generat-
ed from an eAective X "time"-dependent model Hamil-
tonian, ''

N

H(X) = gn=l
—2 g V„(X)ln~x; —x„~.

i &n
(5)

Equation (5) represents a Hamiltonian for a one-
dimensional Coulomb gas coupled to a heat bath with
N(N —1)/2 degrees of freedom through k-dependent
coupling parameters ("charges") V;„(k). In the semi-
classical limit, N ~, the reduced density function of a
small system (with 2N degrees of freedom) coupled to a
reservoir with —N /2 degrees of freedom is expected to
be canonical,

N

P(H) =exp[ —PH) = exp —~ g p;i=1

)&exp 2P g (VP„) ln~x; —x„~ . (6)
i (n

The essential assumption underlying (6) is that the
coupling to the reservoir through rapidly Auctuating
"charges" V;„(X) is sufficiently strong that equilibrium is
attained within the available physical X, time (i.e.,
strength of the nonseparable perturbation). Further-
more, replacement of V;„by its average (V;„) requires
that the fluctuations are fast on the time scale of the
motion in the 2N phase space. The origin of these rapid
Iluctuations is close collisions (i.e., avoided crossings) be-
tween adjacent energy levels.
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FIG. 1. Histogram of the single-particle kinetic-energy dis-
tribution at three different "times" (a) A, =0, (b) A, =0.10, and

(c) X=0.65. (---) Boltzmann distribution with temperature

P
' =&p —(p)'). Equation (8) agrees with the GOE prediction if the ex-

ponent in (8) happens to attain the value

Tracing out all positive coordinates, Eq. (6) predicts a
Maxwell-Boltzmann distribution for the single-particle
kinetic energy. A test for a Maxwell-Boltzmann distri-
bution has the advantage that it does not explicitly in-

volve the properties of the fluctuating charges V;„(1).
Figure 1 displays the distribution of the kinetic energies
at various X times. Note that the peak at zero momen-
tum (all p„=0) at X =0 is a peculiarity of the system of
coupled Morse oscillators. With increasing X the distri-
bution indeed approaches a Maxwell-Boltzmann distri-
bution represented in Fig. 1 by a straight line with tem-

perature

Figure 2(a) displays the temperature, the ensemble
averages (V;„), and the subset of nearest-neighbor cou-
plings (V„„+t)as a function of k, while Fig. 2(b) gives

g for a fit with a Maxwell-Boltzmann distribution. Ob-
viously, equilibrium is reached for A, =0.6 as reflected in

both an approximately constant value of P
' and small

g values. The ensemble averages (V;„) show remark-
ably little variation as a function of X,.

The joint particle- (level-) distribution function fol-
lows from (6) upon tracing out all momentum coordi-
nates,

i &n

2P(V;„)=1.
For arbitrary exponents Eq. (8) implies for the NNS dis-
tribution [Eq. (2)] locally

(10)
S 0

with

yi =2P& Vn', n+ i ) .

Extending (10) to large S using the standard procedure
for deriving the Wigner distribution' yields a Brody-like
distribution [Eq. (2)] with y& playing the role of the Bro-
dy parameter q. The important result is that y] can be
directly determined in terms of the equilibrium kinetic
and potential energies of the Coulomb-gas Hamiltonian
[Eq. (11)] provided that equilibrium has indeed been
reached. In turn, if y& =q, a direct numerical deter-
mination of the Brody parameter becomes possible.

Figure 3 displays both the Brody parameter q deter-
mined from fits with NNS distributions and y] deter-
mined from Eq. (11) together with the fraction q, ~ of the
relatively narrow classically chaotic phase space. For the
classical calculation we used initial conditions on the en-

ergy hypersurface which lies approximately in the center
of the stretch from the 400th to the 1000th quantal ei-
genvalue entering the statistics (E=0.75 ~0.1 in units
of the dissociation energy). We note first that the transi-
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FIG. 3. Brody parameter q (---), y~ ( ), and fraction of
classically chaotic phase space q, ~ (Z) as a function of k.

HFE.
We have observed that in the chaotic regime large

fluctuations persist and subensemble averages (V;„) for
different ~i

—n 1 show systematic deviations. Both obser-
vations indicate deviations from a GOE joint-proba-
bility-distribution function [Eq. (8)] and the persistence
of long-range correlations in the spectra.
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tion to classical large-scale chaos (q, ~

~ 0.6) occurs
simultaneously with the approach of statistical equilibri-
um of the energy-level distribution as described by the
HFE (k & 0.6). At the same time the exponent y~ agrees
well with the Brody parameter q determined from fits to
histograms, in agreement with the hypothesis (11). In
line with other investigations' we find that q (or y~)
stays below the GOE predictions, probably because of
residual islands of regular motion. In the near regular
regime (7 (0.5) the ensemble is far from statistical
equilibrium and y~ deviates strongly from q. Contrary to
previous assumptions, ' the Poissonian distribution can-
not be derived from equilibrium statistical mechanics for
the HFE. The latter is a consequence of the fact that in

the regular regime avoided crossings become crossings.
In this limit the N-body system behaves like a collision-
free gas which does not attain equilibrium.

In summary, the first detailed numerical of the Hell-
man-Feynman equation for the motions of energy levels
confirms that the nearest-neighbor-spacing distribution
approaches a statistical-equilibrium distribution for large
values of the control parameter for the non-

separable perturbation. The nearest-neighbor-spacing
distribution approaches a Brody-type distribution with a
Brody exponent q close to but not coincident with the
value for the Wigner (or GOE) distribution. The Brody
parameter can be determined directly from equilibrium
properties of the N-body Hamiltonian which generates
the HFE [Eq. (11)]. We expect the same to be true for
the exponent q of level repulsion in other interpolation
formulas for the nearest-neighbor spacings which have a
power-law limit P(S) tx: S~ for S 0. In the regular re-

gime, on the other hand, the level distributions can only
be determined from the nonequilibrium solution of the
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