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Fractal Dimension in 1Vonhyperbolic Chaotic Scattering
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In chaotic scattering there is a Cantor set of input-variable values of zero Lebesgue measure (i.e. , zero
total length) on which the scattering function is singular. For cases where the dynamics leading to
chaotic scattering is nonhyperbolic (e.g. , there are Kolmogorov-Arnol'd-Maser tori), the nature of this
singular set is fundamentally diferent from that in the hyperbolic case. In particular, for the nonhyper-
bolic case, although the singular set has zero total length, we present strong evidence that its fractal di-
mension is l.

PACS numbers: 05.45.+b, 03.20.+i

In a typical scattering problem, one considers particles
incident from infinity which interact with a localized po-
tential (the scatterer) and then move oA to infinity. It
has recently become clear that, in many problems of this

type, the basic dynamics can be chaotic, and the associ-
ated phenomenon has been called chaotic scattering. ' A
defining attribute of chaotic scattering is the singular be-
havior exhibited by scattering functions. By a scattering
function we mean a plot of an output variable character-
izing the trajectory after scattering versus an input vari-
able characterizing the incident trajectory (e.g. , scatter-
ing angle versus impact parameter). In chaotic scatter-
ing the scattering function is singular on a Cantor set of
values of the input variable. ' In any arbitrarily small
neighborhood of such a singular input-variable value, the
output variable varies wildly, and the range of variation
of the output variable does not decrease to zero as the
size of such a singular input-variable neighborhood is re-
duced. Numerical experiments demonstrating this strik-
ing behavior have been performed. ' Furthermore, it
has been shown that the singular set corresponds to ini-

tial conditions which yield orbits which enter the scatter™
ing region but never leave it. ' The existence of this

type of behavior of the scattering function means that
relatively small uncertainty in the input variable can
often make determination of the output variable impossi-
ble. A quantitative measure characterizing the magni-
tude of this eA'ect is the fractal dimension of the set of
singular input-variable values. For the case where the
chaotic scattering set is hyperbolic, this dimension is typ-
ically less than 1 and greater than 0. ' lt is the purpose
of this Letter to consider the fractal set of singular
input-variable values for the case where the chaotic
scattering set is nonhyperbolic. ' In this Letter we do
not give a precise definition of hyperbolic dynamics. We
do note, however, that when the dynamics is hyperbolic,
all periodic orbits are unstable, and there are no Kol-
mogorov-Arnol'd-Moser (KAM) tori. Nonhyperbolic
chaotic scattering is typically characterized by the pres-
ence of KAM tori in the scattering region. Our main re-
sult is that in the nonhyperbolic case, although the singu-
lar set has zero total length (zero Lebesgue measure), its
fractal dimension is always 1. This means that the

difhculty of determining outputs from inputs having
small uncertainty is (in a sense to be discussed) maximal
for nonhyperbolic chaotic scattering.

It is instructive at this point to consider a simple ex-
ample of a zero-Lebesgue-measure Cantor set which has
fractal dimension d=1. The set is constructed in stages
as follows. Start with the interval [0,1]. Remove the
open middle third interval. From each of the two
remaining intervals remove the middle fourth interval.
Then from each of the four remaining intervals remove
the middle fifth, and so on. At the nth stage of the con-
struction, there will be N=2" intervals, each of length
e„=2 "[2/(n+2)]. The total length of all intervals
e„N—n ' goes to zero as n goes to infinity. For a cov-
ering of the set by the e„ intervals we have N(e) —e
x (lne ') '. The box-counting (or "capacity") dimen-
sion is d =lim, ti[lnN(e))/(lne ), and clearly yields l.
Basically, d is the exponent of the dependence N(e) —1/
e", where the weaker logarithmic dependence is imma-
terial in the determination of the dimension. We note,
however, that it is the logarithmic term which is respon-
sible for ensuring that the Lebesgue measure is zero:
eN(e) —(In@ ') ' approaches 0 as e 0.

To generalize this example, if at each stage we remove
a fraction ri„=a/(n+c) (where a and c are constants)
from the middle of each of the 2" remaining intervals,
then we find that

1 1N ——ln—
E

We note from (1) that the slope of the curve lnN vs

1n(e '), d(lnN)/d(inc '), is always less than 1 for
small nonzero e, and it approaches 1 slowly (i.e., loga-
rithmically) as e 0 (again yielding d= 1). Thus, for
fractals whose general character is similar to that for
this example, we expect that accurate numerical estima-
tion of the dimension will require going to very small
scales. In addition, we also expect that any numerical
estimation of the dimension made using a finite range of
scales will be an underestimate, but that as the scale is
made much smaller the numerically determined value
will increase toward 1.
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The reason why we suspect that the dimension of the
fractal set of singularities is 1 in the nonhyperbolic case
is that in nonhyperbolic situations there is an algebraic
decay with time of the fraction R of incident particles
that remain in the scattering region, R(t) —t

This algebraic decay is in contrast with the exponential
decay' ' found in the hyperbolic case, R(t)
—exp( —yt). Based on previous analyses of the dynam-
ics of chaotic scattering, ' ' we can imagine that, in
the hyperbolic case, a standard (i.e., d (1) Cantor set
results qualitatively as follows. There is an interval of
input variables which lead to trajectories that remain in
the region of the scatterer for at least a duration of time
To. By time 2TO a fraction g of these particles leave.
Say that the initial conditions of these escaping particles
are all located in the middle of the original interval.
Then we are left with two equal-length intervals of the
input variable which yield trajectories which remain for
at least a time 2To. By time 3To say that an additional
fraction g of the particles remaining at time 2TO escape.
Assuming that they do so from the middles of the two in-
tervals at time 2TO, we now have four remaining inter-
vals. Proceeding in this way, we obtain a Cantor set of
dimension d = ln2/ln [(1—g)/21 ' on which particles
never escape. The exponential decay of the remaining
particles with time, R(t) —exp( —yt), in this case has a
decay rate y=To ' ln(l —rl) '. This simple picture
captures the essence of what happens in the hyperbolic
case. ' ( ) As a crude indication of the behavior in the
nonhyperbolic case, we can imagine following the same
process, but with algebraic (rather than exponential) de-
cay. Then the fraction of particles which leave at each
stage g„ is no longer constant, but decreases with n. In
particular, rl„= —ToR ' dR/dt for large n, giving
rt„=a/n This y.ields Eq. (1) and hence a dimension-one
Cantor set. [Thus for this model the power a of the log-
arithmic term in (1) is identified with the algebraic-
decay exponent. ] Clearly, the above is only a heuristic
argument which leads to the conjecture that the dimen-
sion might be 1 in nonhyperbolic cases. In what follows
we present numerical evidence that strongly supports this
conjecture.

To facilitate our numerical calculations, we use an
area-preserving map rather than a continuous-time
Hamiltonian system,

x' =X[x —(x+y) '/41,
(2)

y'= (1/g) [y+ (x+y) /4],
where we take the parameter k to be greater than 1.
This quadratic map has one fixed point at the origin
(unstable) and another x =Ay, y =4(A, —1)/(X+ 1)
(stable for 1 (k (3+J8 =5.828 and unstable for X & 3
+JS). For large x and y the quadratic terms in (2)
dominate, and x quickly moves to —~. In addition, it
can be shown that any initial condition in x & 0 moves to
x = —~. Thus any invariant set of (2) must lie in x ~ 0
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FIG. 1. Time-delay functions T(xp). (a) For the quadratic
map with k =4. 1 with x0=1.03302+Bx and Bx in the range 0
» Sx» 10 . (b) Same as (a) but with xp=1.03302270685
+Sx and 8x in the range 0» 8x» 10 ' . (c) For the d=1
Cantor set with rl, =1/(n+ 2). (d) An expanded plot of (c).

and in a finite region (x +y (r ) about the origin.
We have numerically examined (2) in a range of the pa-
rameter k, 1 ~ X ~ 15, and we find that the invariant set
is apparently hyperbolic (non hyperbolic) for A, ~ 6.S
(k(6.S). That is, we observe no KAM tori and the de-
cay is exponential for X ~ 6.5.

We define the time delay T for an initial point (xo,yo)
as the number of iterations it takes to reach x (xf &0.
Specifically, we choose yo= —3 and xf = —3 and con-
sider T as a function of xo. The function T(xo) for a
typical nonhyperbolic case is shown in Fig. 1(a) for
X=4.1. Figure 1(b) shows a blowup of T(xo) in a small
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interval where Fig. 1(a) indicates a long time delay. The
horizontal axes in Figs. 1(a) and 1(b) are 8x =xp —x, I„
where x, = 1.033 02 and xb = 1.033022 706 85, respec-
tively. For comparison, Fig. 1(c) shows the time-delay
function resulting from the model dimension-one Cantor
set described previously, while Fig. 1(d) shows a blowup
of a small interval in Fig. 1(c). The relevant point is
that the density of singularities appears to be much
greater in the blowups than in the plots over the larger
intervals, and this is true for the result both from Eq. (2)
and from the dimension-one Cantor set model. This is
qualitatively diferent from what one observes in the hy-
perbolic case. In particular, in the hyperbolic case the
general character of the behavior of T(xp) in blowups is
qualitatively indistinguishable from that on larger
scales. The reason for the denser appearance of the
singularities in the blowup for the case of the one-
dimensional Cantor-set model is that the successively re-
moved intervals get relatively smaller as the delay time
increases (i.e., ti„decreases with n).

In measuring the dimension of the Cantor set in the
nonhyperbolic case, it is essential, as previously dis-
cussed, to use small enough e. Estimation of the usual
box-counting dimension requires an extremely large
number of intervals when e is very small (like 10 ' ).
Computation of the uncertainty dimension is much
less demanding, and this is the dimension we shall use.
The uncertainty dimension for the time-delay function is
calculated as follows. For a fixed value of "uncertainty"
e, we randomly choose a point xp and compute

~
T(xp)

—T(xp+e) ~. If ~T(xp) —T(xp+e)
~

& 0.5, then we say
that xp is E uncertain. (The subsequent results for the
dimension are independent of the choice 0.5 in the in-
equality. ) We then randomly choose another xp and de-
cide whether it is uncertain. We continue doing this un-
til the number of uncertain points reaches a prescribed
figure (typically 100). We then divide the number of un-
certain points by the total number of points chosen (both
certain and uncertain) to obtain the uncertain fraction
f(e). The uncertainty dimension is defined as d=l
—lim, p[lnf(e)/Ine], where f(e) is the probability that
a randomly chosen xo is uncertain, and is numerically
approximated by f(e). After calculating f(e) for many
values of e, we plot f(e)/e as a function of e on a log-log
scale. Typically we observe that such plots are well
fitted by a straight line, indicating that the uncertain
fraction scales as a power of E, f(e) —e~, which gives an
estimate for the uncertainty dimension, d =1 —P. Thus
the uncertainty dimension essentially tells us how the
probability of making an error of order 1 or more (e.g. ,
greater than 0.5 in our computations) in determining
T(xp) for randomly chosen xp scales with uncertainty E

in xo. When d is larger this scaling is more unfavorable
(i.e. , the degree to which one is able to improve one' s
predictive power [reduce f(e)] by decreasing the uncer-
tainty e is more limited), and the most unfavorable scal-
ing possible is d= 1 (since d ~ 1). When d is close to 1,
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FIG. 2. Plots of log~p(f/e) vs log~pe, where f is the uncer-
tainty fraction and e the uncertainty. (a) The slope gives
d =0.79 for the range of xp in Fig. 1(c). (b) For the range in
Fig. 1(d), the slope gives d =0.96.

computation of the uncertainty dimension is especially
effective because f(e) is large and the total number of
required points is relatively small. From the definition of
the uncertainty dimension it can be shown that it is
smaller than or equal to the box-counting dimension.
The uncertainty and box-counting dimensions have been
conjectured to be equal in typical dynamical systems,
and classes of systems for which rigorous results can be
obtained satisfy this. ' Furthermore, we can prove that
our model d=l Cantor set also has an uncertainty di-
mension of 1, in agreement with its box-counting dimen-
sion.

Figure 2(a) (for k =4.1) shows results for log~p(f/e)
vs log~or using points xo randomly chosen in the interval
x, ~ xp ~ x, +Ax, where Ax =10 [T(xp) in this
range is plotted in Fig. 1(a)]. The slope of the fitted line
gives d=0.79. Figure 2(b) shows similar results, but
now using the much narrower range of xo shown in Fig.
1(b), xy ~ xp ~ xi+Ax, where Ax =10 ' . The slope
in this case gives a value of d significantly closer to 1

(d=0.96). One reason for employing this zoom-in tech-
nique is that there may be large intervals where the dis-
cernibility of the possible one-dimensional nature of the
set requires much more magnification than in other inter-
vals" (e.g. , see Figs. 16 and 18 of Ref. 5). The zoom-in
technique allows us to focus on those intervals where the
higher-dimensional structure is more easily measured.
In addition, the use of very small e is expected to be
necessary in order to obtain dimensions close to l. In
particular, in our model the reason the dimension is 1 is
that the removed fractions g„eventually get very small,
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FIG. 3. The uncertainty dimension for the quadratic map vs

and this only happens at sufficiently small scale. This
can also be clearly seen by applying the uncertainty-
dimension technique to the model T(xp) shown in Figs.
l(c) and 1(d). The result for the range shown in Fig.
1(c) is d—=0.88 (for 10 ' (e(0.1), while d=0.9S
(for 10 ' ( e( 10 ) is obtained for the range in Fig.
1(d).

We now present results for numerically determined
values of the uncertainty dimension for (2) as a function
of A. . In Fig. 3, we show two types of data. The dots are
obtained with ranges hx ~ 10 and the triangles with
hx ( 10 . In the hyperbolic case (X larger than about
6.5), both types of data yield comparable results for d.
The computed dimension values for the hyperbolic range
of k can be significantly lower than the values in the
nonhyperbolic range, where the computed dimension
values for the triangles are typically larger than 0.95. As
expected from our previous discussion, and in contrast
with the results for the hyperbolic range of X, the trian-
gles, which correspond to narrower ranges in xo, are al-
ways significantly above the dots when X is in the nonhy-
perbolic range. This is consistent with the supposition
that, throughout the nonhyperbolic range, the measured
value of d will approach 1 as smaller scales are exam-
ined. '

In conclusion, by using the quadratic map as an exam-
ple, evidence has been presented which strongly supports
the conjecture that fractal chaotic scattering sets have
dimension 1 in the nonhyperbolic case. In contrast, the
fractal dimension in the hyperbolic case can be far below
1. In the hyperbolic case, the structure of the time-delay
function is that of a standard (d ( 1) Cantor set, as dis-
cussed, for example, in Refs. 2 and 3(b); while in the
nonhyperbolic case, it resembles the time-delay function
obtained from our d =1 Cantor-set model.
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