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Finite-Size Corrections and Scaling Dimensions of Solvable Lattice Models: An Analytic Method
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A general analytic method for calculating finite-size corrections, central charges, and scaling dimen-
sions of solvable lattice models is presented. The approach is to solve the special functional equations or
inversion identities satisfied by the commuting row transfer matrices of these lattice models at criticality.
For purposes of illustration, the method is applied to calculate the central charge c= —, and leading
magnetic scaling dimension x = » of hard hexagons. These numbers are rational due to special values
of Rogers dilogarithms.

PACS numbers: 05.50.+q, 75.10.Hk, 75.10.Jm

where h =4,5, 6, . . . . The first few members of this
series are identified with the universality classes of the
critical Ising model (h=4), the tricritical Ising model
(h=5), and the tetracritical Ising and three-state Potts
models (h=6). The scaling dimensions x, which give
the large-distance algebraic decay of correlations of the
various scaling fields at criticality, are given by the con-
formal weights in the Kac table. In two dimensions, the
thermal and magnetic scaling dimensions, denoted by x,
and x, respectively, are related to the usual critical ex-
ponents by the scaling relations

2 —a =2v =2/(2 —x,), 2P/(2 —a) =x (2)

The central charge and scaling dimensions of critical
lattice models are accessible ' from finite-size correc-
tions to row-transfer-matrix eigenvalues. Unfortunately,
the widely adopted analytic methods for calculating the
central charge ' have proved too cumbersome to ex-
tend to calculations of scaling dimensions. Therefore
much effort has been directed to numerical calculation of
finite-size corrections (e.g., Refs. 11-14). In this Letter,
we present new methods to calculate analytically the
finite-size corrections and scaling dimensions of critical
lattice models. The approach is to solve special function-
al equations or inversion identities' ' and is quite gen-
eral. For definiteness, however, we consider just the
hard-hexagon model' ' in this Letter. A summary of
further results is given in the concluding discussion and
details wj. ll be published elsewhere.

An outstanding success of conformal field theory is the
precise quantitative prediction of critical exponents and
scaling dimensions for many two-dimensional statistical
systems. Critical behaviors are classified into universali-

ty classes according to the central charge c of the
Virasoro algebra corresponding to the conformal group
of symmetries at criticality. For c & 1, a complete
classification of critical exponents can be given in terms
of the unitary series with central charge'

c =1 —6/h(h —1),

The critical hard-hexagon model is a special case of
the generalized hard-hexagon model. This is a lattice
gas on the square lattice with nearest-neighbor exclusion.
The spins or occupation numbers, denoted a, b, etc. , take
the values 0 or 1 according to whether the site is empty
or occupied. The spins on edges are restricted to the
values (a,b) =(0,0), (1,0), or (0,1). The weights of al-
lowed faces are
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(3)

where X =tr/5 is the crossing parameter, St =sink, So
=sin2X, and 6 is the Kronecker delta. The spectral pa-
rameter u is related to spatial anisotropy and lies in the
interval —tr/5 ~ u ~ 0 in the physical regime with
u = —tr/5 for hard hexagons.

The face weights satisfy the Yang-Baxter equations, '

so the generalized hard-hexagon model is exactly solv-
able and possesses a family of commuting row transfer
matrices V(u) with elements

sin(2k+ u )sinkT(u) =
sin(2X —u)sin(X+ u)

V(u)

satisfy the inversion identity

T(u)T(u+Z) =1+T(u —2X)

subject to the periodicity T(u+tr) =T(u) and crossing

I
N g~

&tT~V(u)~cr') = Q IV
~i+~,

where a and o' are two consecutive row configurations of
an ¹ olumn lattice with oN+~ =oi, o.N+~ =o.~. The ei-
genvalues of V(u) are entire functions of u and are
determined by their zeros in the complex plane. The ei-
genvalues T(u) of the normalized transfer matrices
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symmetry T(u) =T(X —u), where the overbar denotes
complex conjugate. The inversion identity (4) is an ex-
act equation for finite W and completely determines the
eigenvalues T(u).

Let T(u) =exp( E„)—be an eigenvalue of T(u) and
E„ the corresponding energy level, where n =0, 1,2, . . .
labels the levels. Then conformal invariance predicts
that the leading finite-size corrections to the energy lev-
els take the form

Ep =Nf (laic/6N) sinO,

E„Ep= (2x/N) (x„sinO+ is„cosO),
(5)

where Ea is the ground-state energy and f is the bulk
free energy. The scaling dimensions and spins of the
scaling fields are given by x„and s„. The angle 0 is
determined by the spatial anisotropy and, for hard hex-
agons, is given by O= —10u/3.

For N=0(mod3), the largest eigenvalue T(u) has
zeros which become dense on the lines Re(u)
= —4x/10, )r/IO in the thermodynamic limit. To solve
the inversion identity (4), we therefore distinguish two
strips in the complex u plane where T(u) is analytic and
nonzero: strip 1,

—4x/10 & Re(u) & x/10;
strip 2,

x/IO & Re(u) & 6)r/10.

havior' multiplied by some correction functions l(u),

T) (u) =z) (u) l ) (u), z) (u) = sin(5u/3 —)r/3)

T2(u) =z2(u) l2(u), z2(u) = sin(5u/3)
sin 5u 3 —2/r 3

(6)

Inserting (6) into the inversion identity (4) we obtain

l (u)l (u+X)
i2(u+3k)

1

T2(u+3x) '

(7)
l2(u)12(u +x) 1

l((u —2k) T((u —2k) '=p) u '=I+

where the subscripts refer to the relevant strip. The
functions l) (u), lz(u), p) (u), and pz(u) are analytic and
nonzero in their strips of analyticity, and their loga-
rithms tend to constants as Im(u) ~ ~. Therefore
the derivatives of In/((u), etc. , possess Fourier trans-
forms,

L)(k) = „du[lnl)(v)]'e
2~l' ~ Re(v) =x

[Inl) (v)]'=„dk L) (k)e"",
and so on, where the integration paths lie in the ap-
propriate analyticity strips. Taking Fourier transforms
of (7) we can solve the linear equations for L)(k) and
L2(k) in terms of P((k) and P2(k). Taking the inverse
transform and evaluating the k integral then yields

[lnl((u)]'= 0 sin[ —', (u —v)+2)r/3]
dv [Inp((v)]'

2zl jf J Re(~)=~/4 sin5(u —v)

1 10 sin[ —', (u —v)+z/3]
+ dv [lnp2(v)]'J Re( )= — /4 sin5(u —v)

(9)
&0 sin[ —', (u —v)+)r/3]

[lnl2(u) ]' = du [Inp ((v) ] '

j3 J Re(v) K/4 sin5(u —v)

1 10 sin[ —', (u —v)]
+ dv[lnp2(v)]'

J3 J Re(~ ) = —~/4 sin5(u —v)

Restricting the T and p functions to appropriate lines we define the following functions of a real variable x:

a(x):= I T( x—,$(x):=p) x+ —= I+a(x),3l 375' 3l
10 20 ' 10 4

(10)r

h(x):= 1 T2 x+, 8(x):=p2 x ——= I +t)(x) .
3l 7z' 3l z'

10 20 ' 10 4

After integrating (9) with respect to u and introducing these functions we obtain the coupled nonlinear integral equa-
tions

lna (x) = —Inz ) (3ix/10 —3)r/20) —s *In5 —c *In 8+D (,
Inb(x) = —lnzq(3ix/I 0+7x/20) —c + In91 —s + InS+ D2,

975



VOLUME 66, NUMBER 8 PHYSICAL REVIEW LETTERS 25 FEBRUARY 1991

where * denotes convolution and the kernels s and c are
given by

right-hand side approach —J3e as N ~. Assum-
ing that a, 6, 5, and 8 scale similarly, we define

J3 sinh —,
'

y J~ cosh 2 y
s(y)=, , c(y) =

2& sinh &y 2& cosh 2y

a(x):= lim a(x+InN),
(i3)

lim T(u) = (I+JS)/2. (12)

We next evaluate the constants D] and D2 from the
asymptotic behavior of T(u),

A(x):= lim 5(x+InN) =I+a(x),

with analogous definitions for b(x) and 8(x). From
(11) we then obtain

tm(u) —+
lna(x) = —J3e "—s+Inh —c+InB,

lnb(x) = —J3e —c*lnA —s*lnB.
Hence taking the limit x~ ~ in (11) we deduce D~
=D2=0

The characteristic length scale of the spread of zeros
on the lines Re(u) = —4x/10, x/10 is lnN. If we replace
x with x+lnN in (11), both of the first terms on the

(i4)

Next, taking the variable u =3ix/10 —3x/20, we see
from (10) and (11) that the finite-size correction to the
eigenvalue T~(u) in the physical strip is

s +In5+ c*lnS = dy [s(x —y) +c(x+y)]In'(y) +
& dy [c(x—y) +s(x +y)]lnS(y)

J3 f+ oo

coshx dye ~[lnA(y)+InB(y)],zN —oo (is)

where we have used 5( —x) =8(x) and in the last step we have scaled the integration variable. The contribution to the
integrals outside the scaling regime is exponentially small. Remarkably, the final integral in (15) can be calculated
from (14) without explicitly solving this set of integral equations. By multiplying (14) with [InA(x)]', [lnB(x)]' and its
derivative with InA (x),lnB(x), subtracting, and integrating we obtain

J3„dxe [Ines(x)+ [InA(x)]'+lnB(x)+ [lnB(x)]'j

dx[[1na(x)]'InA(x) —Ina(x) [InA(x)]'+ [lnb(x)]'lnB(x) —lnb(x) [lnB(x)]'j, (i 6)

where the contributions of the kernels cancel due to symmetry. We then integrate the left-hand side by parts and
change the variable of integration x to a and b on the right-hand side to obtain

~ a(oo)
2&3„dxe [InA(x) + lnB(x)] =„dap oo In(1+a) lna + I' t i

db
ln(l+b)

1+a ~ b( — ) b
lnb 4 z
1+b 5 3

(i 7)

The last integrals are related to Rogers dilogarithms
and are simply evaluated for these special values of the
terminals. The asymptotic values

a(~) =b(~) =(J5 —I)/2, a( —~) =b( —~) =0

follow from (6) and (12) after recalling the definitions
(10) and (13). Combining (15) and (17) and using
coshx= —sin(10u/3) gives the desired result for the
largest eigenvalue in the physical strip,

4 z . 10uEo= —lnT(u) = —NInz~(u)+ — sin56N 3

from which we obtain the central charge c =
5 ~ The

hard-hexagon model is in the same universality class as
the three-state Potts model and accordingly this agrees
with the value given by the unitary series (I) with h =6.

The two next-largest eigenvalues of T(u) are a
complex-conjugate pair with zeros distributed asymme-
trically on the lines Re(u) = —4x/10, x/10. These eigen-
values have the same analytic properties as the largest ei-

!
genvalue but difI'erent asymptotic behavior given by

lim T(u) = (I —J5)/2,
Im(u) —~ oo

a( ) =b( ) = —(I+J5)/2, a( — ) =b( — ) =0.
Some care needs to be taken in treating the branches of
logarithms. Picking one of the two complex-conjugate
eigenvalues yields

Ina(~) =Inb(~) =In[(1+J5)/2] —xi,
InA (~ ) =lnB (~ ) =In [(JS —I )/2] —xi .

Evaluation of the constants in (11) then gives D
~

Dp =2~i/3—
Proceeding as before, we obtain (16) with the addi-

tional term

dx[[InA(x)]' —[lnB(x)]'j =—2zv 4z
3 J —oo 3

on the right-hand side. The dilogarithm integrals in (17)
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can still be evaluated but now they are along appropriate
edges of the branch cuts. The contribution from these
integrals is

1ny + «+ ~&&/2
d

ln (y —
1 ) 1ny""1-y '-

16 x 2

5 3

Putting everything together finally leads to the result
r

E~ = —Nlnz~(u)+ + —4 sin
2+i 16 z . 10u

3 5 6N 3

with the result

3s 4(s + 1)p2c= s = —,', 1,s + 1 tr(tr —2sy)

where y is the anisotropy and p is the boundary twist.
For cyclic boundary conditions with no twist, this gives
the familiar values c =1 and c =

2 . On the other hand,
if p = y=tr/(m+2s) this yields the values of the unitary
and superconformal series.
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and tricritical hard squares,

C= los
7 3 1 7 6

X = 40)5s8s5 ~

Finally, our methods have also been applied to the six-
and nineteen-vertex models. The central charges of the
related spin-2 and spin-1 LLZ quantum chains con-
sidered previously can now be obtained analytically,

Hence the associated magnetic scaling dimension is
x =

—,', . From (2) this agrees with the known critical ex-
ponents a= 3 and P= 9 .

The scaling dimensions of further excitations and their
towers can be calculated by allowing for a finite number
of zeros excited onto the lines Re(u) = —tr/5, —tr/10,
3tr/10, and 2tr/5. For example, the thermal scaling di-
mension x =

5 corresponding to a =
3 is obtained by ex-

citing a pair of zeros onto each of the lines Re(u)
= —tr/5 and Re(u) =2tr/5. Each such isolated zero
must satisfy an additional equation obtained by requiring
that the right-hand side of (4) vanishes. In the scaling
limit, the logarithm of this equation admits many solu-
tions diA'ering in the choice of integer multiples of 2zi.
This corresponds to the many locations at which a par-
ticular zero can be excited and is the origin of the towers
of integer spaced levels above primary states.

The central charge and scaling dimensions of tricriti-
cal hard squares ' have also been calculated. This model
has weights given by (3), but the physical regime is
0~ u ~ tr/5. Since the eigenvalues cross at u=0, dif-
ferent eigenvalues dominate. The largest eigenvalue in

this case has zeros which accumulate on the lines Re(u)
= —tr/10, 3tr/10 and the excitations admit a finite num-
ber of zeros shifted onto the lines Re(u) = —tr/5, tr/10,
2tr/5, 3tr/5. The central charge is found to be c =

—,', , as
given by (1) with h =5, so the tricritical hard-square
model is in the same universality class as the tricritical
Ising model. In summary, our results are as follows:
critical hard hexagons,
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