Comment on "Interaction of Magnetoexcitons and Two-Dimensional Electron Gas in the Quantum Hall Regime"

In a recent Letter Chen et al. reported very striking magneto-oscillations in the photoluminescence (PL) intensity of transitions arising from recombination of nonequilibrium electrons in the $n_c = 2$ electron subband in $Al_yGa_{1-y}As$ -In_xGa_{1-x}As-GaAs modulation doped quantum wells (QWs).¹ Maxima in PL intensity correlated with odd filling factors in Shubnikov-de Haas (SdH) measurements. The optical-SdH (OSdH) observations were attributed to oscillations in the strength of many-body Coulomb interactions of the $n_c = 2$ "magneto exciton" state with the high density of electrons (n_s) =1.1×10¹² cm⁻²) in the n_c =1 subband. The purpose of this Comment is to point out that such magnetooscillations in the $n_c = 2$ intensity can be at least partially explained in terms of oscillations in the population of the $n_c = 2$ subband with magnetic field.

In relatively wide, asymmetrically doped QWs, such as that discussed in Ref. 1 (width 150 Å), with high $n_c = 1$ subband density, the electrostatic band-bending potential gives rise to a strong enhancement of the wave-function overlap of $n_c = 2$ electrons with $n_c = 1$ valence subband holes, relative to that for $n_c = 1$ electrons. The result is a strongly enhanced oscillator strength (a factor of ~ 2 to 3) for E_{21} $(n_c = 2 \rightarrow n_v = 1)$ relative to E_{11} $(n_c = 1 \rightarrow n_v)$ =1) recombination, even without the inclusion of manybody excitonic enhancements for transitions occurring in E_2 close to the Fermi energy (Fermi energy edge singularity). We find excitonic enhancements of a factor of 2 to 3 (at 3-meV linewidth) for E_{21} transitions at zero magnetic field (B) in a series of asymmetrically doped QWs (Ref. 2) close to enhancements found for excitonic transitions of similar linewidth in undoped QWs.

In the magnetic field, oscillations of the $n_c = 2$ population are expected each time E_2 is crossed by the Landau levels (LLs, number N=0, 1, 2, etc.) from the $n_c=1$ subband. These oscillations will be nearly periodic in 1/B since the variation in energy of E_2 is small, at least up to $B \approx 7$ T. The spectra of Chen *et al.* (Fig. 3) indicate that as the N=3 LL approaches E_2 from 7.6 to 8.5 T (v = 5 at 9.1 T),³ the intensity of E_{21} shows a rapid increase with B field, with maximum E_{21} intensity at 8.5-8.6 T, $\sim 0.3-0.4$ T after the peaks are no longer resolvable (at ~ 0.5 T below v = 5, as noted in Ref. 1). Even though the N=3 LL is apparently above E_F (v=6at 7.6 T from the electrical SdH) the PL spectra indicate that it has a significant population up to at least 8.2 T when it is no longer resolved. When the partially occupied N=3 LL and E_2 reach their closest approach (an anticrossing is shown in Ref. 1), E_2 will have its maximum population. A maximum in E_{21} intensity will then be expected, enhanced relative to E_{11} transitions by the greater wave-function overlap. The crossing of N=3

with E_{21} occurs within 0.4 T (Fig. 3 of Ref. 1), at most, of the maximum in E_{21} intensity.

Account must also be taken of the fact that spectroscopic E_{21} and N=3 LL energies are observed in PL and not the true E_2 and E_1 energies which determine the subband populations. Excitonic effects are relatively strong for the k=0 $n_c=2$ subband electrons compared to those for electrons in $n_c=1$,¹ as shown by the small shift rate for E_{21} in *B* field in Fig. 5 of Ref. 1. The result is that the spectroscopic E_{21} energy will be lowered by $\sim 2-3$ meV relative to that for $n_c=1$ transitions.⁴ This will lower the *apparent* field of the N=3 LL crossing with E_2 by ~ 0.4 T, bringing the field of maximum E_2 population in even closer agreement with the maximum in E_{21} intensity.

We believe that the above arguments provide a plausible basis for oscillations in $n_c = 2$ PL intensity with B field. The fields at which E_{21} maxima occur are strongly influenced by the crossing of $n_c = 1$ LLs with $n_c = 2$, as determined by the $n_c = 1, 2$ subband separations. Indeed, we have observed maxima in E_{21} intensity close to either odd or even filling factors in samples with differing $E_2 - E_1$ separations.⁵ Turberfield *et al.*⁴ have reported peaks in $n_c = 2$ subband intensity (at integer v from 10 to 1) in GaAs-GaAlAs heterojunctions at 120 mK, but with large variation in $n_c = 2$ intensity only at v = 1.

In summary, the effects of population oscillations must be accounted for before the OSdH observations in Ref. 1 can be ascribed to oscillations in many-body interactions. The magnitude of the extremely well-resolved oscillations (1000:1 maxima to minima) is also very much greater (by a factor of 10 to 100) than the magnitude of previously studied many-body effects in quantum wells.

We thank G. E. W. Bauer for a helpful discussion.

M. S. Skolnick

Royal Signals & Radar Establishment St. Andrews Road Malvern, Worcs WR14 3PS, United Kingdom

P. E. Simmonds and T. A. Fisher Department of Physics University of Wollongong Wollongong, NSW 2500, Australia

Received 24 September 1990 PACS numbers: 71.35.+z, 73.40.Kp

¹W. Chen, M. Fritze, A. V. Nurmikko, D. Ackley, C. Colvard, and H. Lee, Phys. Rev. Lett. **64**, 2434 (1990).

 2 M. S. Skolnick *et al.*, in Proceedings of the Twentieth International Conference on the Physics of Semiconductors, Thessaloniki, August 1990 (to be published).

³Determined from the field (7.6 T) for v=6 (Fig. 4 of Ref. 1).

⁴A similar point is made by A. J. Turberfield *et al.*, Phys. Rev. Lett. **65**, 637 (1990).

⁵P. E. Simmonds et al. (to be published).