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Two-Dimensional Negative-U Hubbard Model
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Quantum Monte Carlo simulations are used to explore the phase diagram of the negative-U Hubbard
model. As the system is doped away from half filling, (n) =1, the s-wave pair-field correlations are
enhanced and the charge-density-wave correlations suppressed. There is no indication of phase separa-
tion. Away from half filling, the pair-field correlations are consistent with Kosterlitz-Thouless scaling
and a finite T, which peaks near (n) =1 but vanishes at exactly half filling.

PACS numbers: 75.10.Jm
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and the q=0 equal-time s-wave pair-field correlation

The phase diagram of the two-dimensional negative-U
Hubbard model depends upon ~U~/t and the band filling
n=(n;I+n;I) It . is believed to consist of a zero-tem-
perature superconducting-charge-density-wave (CDW)
"supersolid" line for half filling (n) =1 and a finite-
temperature Kosterlitz-Thou[ess superconducting phase
at all other fillings, with T, going to zero as (n) goes to 0
or 2. The phase diagram is symmetric about half filling
&n) =1 because of particle-hole symmetry. This picture
has had some limited numerical support. It has been
previously shown that at half filling' the q=(tr, tr)
charge-density-wave and the s-wave pair-field correla-
tions have long-range order in the ground state. In addi-
tion, the quarter-filled (n) =0.5 band was found to have
long-range s-wave pair-field order in the ground state.
Here we present further results obtained from Monte
Carlo simulations which provide additional insight into
this interesting many-body problem.

The Hamiltonian of the negative-U Hubbard model on
a two-dimensional square lattice with a nearest-neighbor
one-electron overlap matrix element t is

H = t Z (Ciscjs+Cjscis)
(i,j ),s

l E ss

Here c;, destroys an electron of spin s on site i, ~ U~ is the
strength of the attractive on-site interaction, and p is the
chemical potential which determines the band filling n.
With our convention for the interaction, the half-filled
band has p =0.

There are two important types of correlations,
charge-density and s-wave pairing. To characterize
these we have studied the equal-time charge-density
structure factor
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The variation of the pairing and charge-density-wave
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FIG. l. (a) Pairing (P, ) and charge-density-wave [C(sr, sr)]
correlations as a function of the filling (n) for 4&4 and 6x6
lattices with U= —4, t =1, and p 10. (b) Pairing (P.) and
charge-density-wave [C(sr, sr)] correlations as a function of the
inverse temperature p at a filling &n) =0.87 for U= —4 and
t =1 on 4X4, 6X6, and 8x8 lattices.
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correlations with the electron site density (n) is illustrat-
ed in Fig. 1(a). Here P, and C(n, n) are shown versus
(n) for U/t = —4 and P=10 for 4x4 and 6x6 lattices.
At (n) =1, we have P, =C(n, x) within error bars as ex-
pected for the half-filled band. As previously discussed,
a finite-size scaling analysis of P, and C(n, n) for (n) =1
has shown that the system has long-range pairing and
charge-density-wave order in the ground state. ' As (n)
decreases from 1, the charge-density-wave correlations at
q=(n, n) are suppressed, while the pairing correlations
are initially enhanced. Figure 1(b) shows the tempera-
ture dependence of P, and C(n, n), with (n) =0.87 for
4x4, 6x6, and 8x8 lattices with lUl/t =4. Here we see
that P, increases at low temperatures, saturating at a
value which increases with the size of the lattice. The
charge-density structure factor C(tr, n), on the other
hand, settles down to a low-temperature value which is
essentially independent of the lattice size, implying that
the charge-density correlations are short range. It even
appears that C(n, n) decreases slightly at large values of
P, where the long-range pair-field correlations develop.
This could reflect the opening of a superconducting gap
in the single-particle spectrum.

As discussed, we expect that the negative-U Hubbard
model away from half filling will undergo a finite-
temperature Kosterlitz- Thouless transition into a super-

conducting phase. In this case, P, would scale as

P, =N„"f(N /(), (6)
with W the linear lattice dimension, g =0.25, and
g —exp[A/(T —T, ) '~ l. In Figs. 2(a) and 2(b), we show
P, data with U/t = —4 for (n) =0.87 and (n) =0.5 scaled
according to Eq. (6). In both cases T, and A were used
as parameters, giving T, =—0.1, A =0.5 for (n) =0.87 and
, =0.045, A =0.4 for (n) =0.5. With the limitations on

lattice size imposed by our present quantum Monte Car-
o algorithms, these values of T, are clearly approximate.

They are shown as the squared points in Fig. 3, where
the superconducting Kosterlitz-Thouless temperature is
plotted versus (n) for U/t = —4.

Near half filling we have used the analogy with a two-
dimensional Heisenberg antiferromagnetic in a magnetic
field to argue that

T, = —2zJ/ln I I —(n) I (7)
In order to set the coefficient 2n J, we note that in the ab-
sence of a field, the magnetic correlation length (the
pair-field or CDW correlation length for the negative-U
Hubbard model with (n) =1) scales as exp(2'/T), with
J an effective exchange parameter. Using our (n) =1 re-
sults, we find that 2zJ=0.25. This reduction is due to
both spin and charge fluctuations, as noted in Ref. 1.
The dashed line in Fig. 3 corresponds to T, = —0.25/
Inl 1 —(n)l. From Fig. 3 we estimate that the maximum
T, for lUl/t =4 is of order 0.1 t. Based on further simu-
lations at larger values of lUl, we estimate that the max-
imum T, for the negative-U Hubbard model is of order
0.2t for lUl/t=8 and (n)=0.85. For larger values of
(Ul/t, the peak value of T, falls as t /lUl.

In Fig. 4(a), C(q„,q~) is shown versus (q, q~) along
the path indicated in the figure for various values of (n).
As (n) decreases, the peak remains at (n, n), but its am-
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FIG. 2 (G. 2. (a) Pairing correlations (P, ) scaled according to
Eq. (6) for U= —4, t = I, and (n) =0.87. (b) Same as (a)
with (n& -0.50.

(n)
FIG. 3 T, vs (n) for U= —4 and t =1. The solid line is to

guide the eye. The dashed line is T, = —0.25/In
f
I —&n) f.
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FIG. 4. (a) Charge-density-wave correlation q„q» )asa
( ) for different values of (n). (b) (n) vs p forfunction of &q~, qy or i er
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