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Two-Dimensional Negative-U Hubbard Model
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Quantum Monte Carlo simulations are used to explore the phase diagram of the negative-U Hubbard
model. As the system is doped away from half filling, (n) =1, the s-wave pair-field correlations are
enhanced and the charge-density-wave correlations suppressed. There is no indication of phase separa-
tion. Away from half filling, the pair-field correlations are consistent with Kosterlitz-Thouless scaling
and a finite 7, which peaks near (n) =1 but vanishes at exactly half filling.

PACS numbers: 75.10.Jm

The phase diagram of the two-dimensional negative-U
Hubbard model depends upon |U|/t and the band filling
n=(n;1+n;;). It is believed to consist of a zero-tem-
perature superconducting-charge-density-wave (CDW)
“supersolid” line for half filling (n)=1 and a finite-
temperature Kosterlitz-Thouless superconducting phase
at all other fillings, with 7. going to zero as {n) goes to 0
or 2. The phase diagram is symmetric about half filling
(n)=1 because of particle-hole symmetry. This picture
has had some limited numerical support. It has been
previously shown that at half filling"? the q=(x,7)
charge-density-wave and the s-wave pair-field correla-
tions have long-range order in the ground state. In addi-
tion,? the quarter-filled {n) =0.5 band was found to have
long-range s-wave pair-field order in the ground state.
Here we present further results obtained from Monte
Carlo simulations which provide additional insight into
this interesting many-body problem.

The Hamiltonian of the negative-U Hubbard model on
a two-dimensional square lattice with a nearest-neighbor
one-electron overlap matrix element ¢ is

H=—¢ Z (C,'Ist'*'C]TgC,"s)
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Here c¢;; destroys an electron of spin s on site i, |U| is the
strength of the attractive on-site interaction, and y is the
chemical potential which determines the band filling n.
With our convention for the interaction, the half-filled
band has u =0.

There are two important types of correlations,
charge-density and s-wave pairing. To characterize
these we have studied the equal-time charge-density
structure factor
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and the q=0 equal-time s-wave pair-field correlation
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The variation of the pairing and charge-density-wave
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FIG. 1. (a) Pairing (P;) and charge-density-wave [C(r,x)]
correlations as a function of the filling (n) for 4x4 and 6x6
lattices with U= —4, r =1, and $=10. (b) Pairing (P,) and
charge-density-wave [C(x,7)] correlations as a function of the
inverse temperature § at a filling (n)=0.87 for U= —4 and
t=1o0n4x4, 6x6, and 88 lattices.
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correlations with the electron site density {(n) is illustrat-
ed in Fig. 1(a). Here P; and C(x,n) are shown versus
(n) for U/t=—4 and B=10 for 4x4 and 6x6 lattices.
At {n)=1, we have P, =C(x,n) within error bars as ex-
pected for the half-filled band. As previously discussed,
a finite-size scaling analysis of P; and C(x,x) for (n)=1
has shown that the system has long-range pairing and
charge-density-wave order in the ground state.!? As (n)
decreases from 1, the charge-density-wave correlations at
q=(n,n) are suppressed, while the pairing correlations
are initially enhanced. Figure 1(b) shows the tempera-
ture dependence of P; and C(x,x), with {n)=0.87 for
4x4, 6x6, and 8x8 lattices with |U|/t =4. Here we see
that P; increases at low temperatures, saturating at a
value which increases with the size of the lattice. The
charge-density structure factor C(x,7), on the other
hand, settles down to a low-temperature value which is
essentially independent of the lattice size, implying that
the charge-density correlations are short range. It even
appears that C(x,7) decreases slightly at large values of
B, where the long-range pair-field correlations develop.
This could reflect the opening of a superconducting gap
in the single-particle spectrum.

As discussed, we expect that the negative-U Hubbard
model away from half filling will undergo a finite-
temperature Kosterlitz-Thouless? transition into a super-
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FIG. 2. (a) Pairing correlations (P;) scaled according to
Eq. (6) for U=—4, t=1, and (n)=0.87. (b) Same as (a)
with (n) =0.50.

conducting phase. In this case, Py would scale as
P, =NZ2""f(N,/E), 6)

with N, the linear lattice dimension, 7=0.25, and
&~expld/(T —T,.)'"]. In Figs. 2(a) and 2(b), we show
P; data with U/t = — 4 for {n) =0.87 and (n) =0.5 scaled
according to Eq. (6). In both cases T, and 4 were used
as parameters, giving 7,.==0.1, 4 =0.5 for {n)=0.87 and
T.=0.045, A =0.4 for {n) =0.5. With the limitations on
lattice size imposed by our present quantum Monte Car-
lo algorithms, these values of T, are clearly approximate.
They are shown as the squared points in Fig. 3, where
the superconducting Kosterlitz-Thouless temperature is
plotted versus {n) for U/t = —4.

Near half filling we have used the analogy with a two-
dimensional Heisenberg antiferromagnetic in a magnetic
field to argue that

T.=—2zJ/In|1 —(n)|. @)

In order to set the coefficient 2zJ, we note that in the ab-
sence of a field, the magnetic correlation length4 (the
pair-field or CDW correlation length for the negative-U
Hubbard model with {n)=1) scales as exp(2zJ/T), with
J an effective exchange parameter. Using our (n)=1 re-
sults, we find that 2xJ==0.25. This reduction is due to
both spin and charge fluctuations, as noted in Ref. 1.
The dashed line in Fig. 3 corresponds to T.= —0.25/
In|1 —(n)|. From Fig. 3 we estimate that the maximum
T, for |U|/t =4 is of order 0.1z. Based on further simu-
lations at larger values of |U|, we estimate that the max-
imum 7, for the negative-U Hubbard model is of order
0.2t for |U|/t=8 and {(n)==0.85. For larger values of
|U|/t, the peak value of T, falls as ¢ %/|U]|.

In Fig. 4(a), C(gy,q,) is shown versus (gx,q,) along
the path indicated in the figure for various values of (n).
As {n) decreases, the peak remains at (z,7), but its am-
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FIG. 3. T, vs {n) for U= —4 and t =1. The solid line is to
guide the eye. The dashed line is 7. = —0.25/In|1 — (n)|.
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FIG. 4. (a) Charge-density-wave correlation C(gx,q,) as a
function of (gx,q,) for different values of {n). (b) (n) vs pu for
U=—4,3=10,and t =1 on 4x4 and 6 X6 lattices.

plitude decreases, as previously shown in Fig. 1(a). At
the same time, a peak at q=1(0,0) begins to grow. This
can be understood by remembering that a negative-U
Hubbard model which is doped away from half filling
can be mapped onto the half-filled positive-U Hubbard
model in an external z-directed magnetic field which is
proportional to x. Under this spin-down particle-hole
canonical transformation [e;;— d/j (—1)1, C(q) goes
over to (MZM;) and P goes over to (MgMj+MiM}),
with q=(x,7). Now a half-filled positive-U Hubbard
model has long-range antiferromagnetic order in its
ground state. In the presence of a z-directed magnetic
field, it will undergo a spin-flop transition giving rise to a
q=1(0,0) component of the magnetization in the z direc-
tion, which corresponds to the q=1(0,0) peak in C(q).
The antiferromagnetic (MM} + M} M}) correlations at
q={(z,7) correspond to the P;(q=0) pair-field correla-
tions.

Last, we turn to the question of phase separation. In a
continuum model with finite-range forces, phase separa-
tion into low- and high-density phases can occur in more
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than two dimensions.>® However, on a lattice with only
an on-site attraction, the interaction is saturated when a
local pair is formed. In order to examine this in more de-
tail,” we have plotted (n) vs u for U/t =—4 and =10
in Fig. 4(b). The smooth variation of {n) as u changes
suggests that there is no phase separation. In addition, a
histogram of the individual Monte Carlo measurements
of n exhibits a single-peak instead of the two-peak be-
havior which would be present if there were a first-order
transition. Thus we find no evidence for phase separa-
tion. It will be interesting to study an extended negative
Hubbard model in which a near-neighbor attractive in-
teraction is included. In this case, a condensed liquid
phase can form, and it will be interesting to explore the
competition between this phase and the superconducting
phase.

Our conclusions from this study of the two-dimen-
sional negative-U Hubbard model are the following: (1)
Away from half filling, s-wave pairing correlations are
dominant, and only short-range charge-density-wave
correlations occur; (2) the scaling of the pair-field corre-
lations are consistent with a finite-temperature Koster-
litz-Thouless transition which varies with density, as in-
dicated in Fig. 3, with a maximum 7, of order 0.2 for
|U|/t=8 and {(n)=0.85; (3) there is no indication of a
phase separation as the system is doped away from half
filling.
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