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Critical Behavior of Pinned Charge-Density Waves below the Threshold for Sliding
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Numerical results on the static critical behavior of a collective-pinning model of charge-density waves
are presented. Distinct critical behaviors are found for irreversible (typical) and reversible approaches
to the threshold for sliding. From the size dependence of the threshold fields and polarizabilities, at least
two distinct finite-size-scaling correlation-length exponents are identified. New analytic results on the
general behavior of this model both above and below threshold are reported, including the uniqueness of
the sliding state.

PACS numbers: 71.45.Lr, 64.60.Ht, 64.60.My, 72.20.Ht

Much of the electrical transport properties of materi-
als with incommensurate charge-density waves (CDW's)
can be understood in terms of the dynamics of a classical
elastic CDW that is weakly pinned by impurities. At
low electric fields, the CDW deforms, but does not How,
and exhibits hysteretic phenomena associated with its
many metastable states. Above a rather sharp thresh-
old field, the CDW moves with an average velocity, thus
contributing to the transport current. ' Although much
of the observed behavior is qualitatively consistent with
that found in numerica1 and mean-field analyses of a
simple model, quantitative comparisons between theory
and experiment have only just begun to be possible. This
is especially true near the depinning transition, ~here the
nonlinear interactions between many degrees of freedom
give rise to novel dynamic critical phenomena.

Recently, measurements of the nonlinear current
jpDw for fields F just above the threshold field FT have
been fitted by the form jcow —(F FT) », with an e—x-
ponent g which agrees quantitatively with numerical re-
sults obtained from the simple model of a three-
dimensional CD W. Experiments and numerical re-
sults also suggest nontrivial critical behavior below
threshold, although definitive results are lacking. In-
deed, even the form of the critical behavior is not under-
stood in general, especially below threshold.

In this paper, we investigate numerically the critical
behavior of the model system as the threshold field is ap-
proached from below, primarily focusing on the behavior
in two dimensions, which we expect to be qualitatively
similar to that in three dimensions.

The simple model' concentrates on the values of the
phases ip;l of the CDW at impurities i which lie on a d
dimensional lattice and favor particular random values

[p;l of the phases. The energy of a CDW configuration
1s

where the first term represents the elastic interaction be-

tween neighboring sites, the second term represents the
periodic pinning potential, with strength fh;1, and F rep-
resents the external electric field. The dynamics are re-
laxational, with equations of motion dp;/dt = —r)P/tlat;.

This model exhibits two phases: a pinned static phase,
with the system relaxed to a locally stable state, and a
sliding phase, where the system has a nonzero average
velocity v. The depinning transition between these
phases occurs at a threshold field, FT for positive fields
or FT for negative fields, with the pinned phase existing
only for FT ~F ~FT (note that FT ~ FT for a par--

ticular finite realization of the system because the impur-
ity potential breaks the p

—
p symmetry). It can be

shown that if the drive field is constant and is outside
the static range, the system approaches a unique, period-
ic, steady state, with the system translating by 2z with
the "washboard" period T=2x/~v~, a result that previ-
ously was only known empirically.

In contrast, the behavior of this model when the field
is below threshold is highly dependent on history, due to
the many locally stable static configurations that exist. '
An important feature of these pinned states gives rise to
hysteresis: A change in the field causes local minima of
the energy to vanish, so that regions of the size of the
Lee-Rice length, which is the scale where pinning and
elastic forces are comparable, jump to nearby minima.
If the field is returned to its initial value, the system will

usually not return to its original configuration.
We find that as the field is increased towards thresh-

old from a typical initial configuration, the polarization
P (the mean of the phases) diverges via a series of ir-
reversible small jumps, with an exponent y

—1 =0.6 in
two dimensions. By contrast, if the field is decreased
fmm threshold, there are no jumps and the polarization
has only a weak cusp singularity which is reversible.
With both of these histories, the linear polarizability g
(which does not include the effects of the jumps) exhibits
a cusp singularity near threshold characterized by an ap-
parently history-independent exponent y~ = —0.4 in two
dimensions. %'e study the characteristic length scales in-
volved in these critical phenomena by investigating the
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finite-size scaling of various quantities. The width of the
distribution of the threshold fields in finite systems and
the nonlinear irreversible behavior are both character-
ized by correlation lengths which appear to diverge with
the same exponent v= 1 in two dimensions. Surprising-
ly, the linear reversible behavior appears to be character-
ized by a much shorter length with exponent vI = 0.4 in

two dimensions. A tentative interpretation of this puz-
zling behavior is given in terms of the role of local modes
and the "memory" of the unique threshold configuration
as the field is lowered.

For our numerical simulations, we have used periodic
boundary conditions on a lattice of linear size L and a
fixed pinning strength h;=h, with h =5 in two dimen-
sions and h =2.5 in one-dimensional systems, chosen so
that the Lee-Rice length is approximately one lattice
constant. The computations were carried out on a mul-
tiprocessor Connection Machine.

Before proceeding with the numerical results, it is use-
ful to note that there exists a "no-passing" rule for the
dynamics. Consider two solutions to the equation of
motion, fp (t)j and fp; (t)j, that are driven by two fields
F'(t) and F (t), respectively, with F'(t) ~F (t), for
all t. Using the convexity of the elastic potential, it can
be shown that if p (t) ~ p; (t) for all i at time t =0,
then this inequality holds for all t & 0. One immediate
consequence of this rule is that the average velocity is a
unique function of the applied field. Another is that the
threshold field is independent of history, and the station-
ary configuration at threshold is unique modulo overall
phase shifts of 2x.

We now analyze the behavior of the polarization as
FT is approached. We define the reduced field f=F-
—FT+({P;j) relative to the threshold field of a particular
realization of the random system. The polarization
P(f) =I- g;[p;(f) —p ""] is measured from an initial
reference configuration fp ""j.

For definiteness, we chose the initial configuration to
be the unique threshold configuration that is static at
FT, although we find qualitatively similar behavior for
generic initial conditions. We then increase F adiabati-
cally and monotonically towards FT . For two-dimen-
sional systems, we find that the polarizability for in-
creasing field, gl(F) —= (dP/dF) t, is fitted well by the
form g' —( f) ', over roug—hly two decades in f for the
largest system studied, with y=1.58~0.12 (we quote
Icr statistical error bars). In Fig. 1, we plot the shifted
polarization P —Po as a function of reduced field f, for
various system sizes, where the constant Po has been
chosen to give the best fit with the form P —Po—(f (

"+ ' for
~f ~

)0.01. The changes in the
configuration as the field is increased consist of a smooth
background and of local jumps of some of the phases
that are due to local minima disappearing as F is in-
creased. Thus, g'(F)&g'(F) in general. In an infinite
system the jumps occur at a dense set of fields, yielding a
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FIG. l. Average shifted polarization P Po vs reduced field
for the irreversible approach to threshold, where Po= —0.93
has been chosen to give the best power-law fit. Data for two-
dimensional systems of various sizes are shown; the number in

parentheses is the number of realizations that were averaged
over. The dashed line corresponds to a power law with ex-
ponent —y+ 1 = —0.58 for comparison.

smooth P(F) as F is increased.
Even for such an irreversible path, however, it is also

possible to define a linear differential polarizability
g—=g(co 0), which does not include the contribution
from the jumps. Although in a finite system g will

diverge at each jump, we find that for F &FT in the
limit of a large system g(F, L, [P;j ) converges with prob-
ability 1 to a unique value g(F) which is a smooth func-
tion of F. The results for a system of size 256 is plotted
in Fig. 2. The linear polarizability of an infinite system
approaches a finite value, gT, at threshold and can be
fitted with an upward cusp of the form gT —(g(f))

I—f "', with the exponent y/= —0.40 ~ 0.12 (the angu-
lar brackets denote averaging over realizations of the
system). Note that this is in sharp contrast to any finite
system, for which g diverges at threshold with an ex-
ponent y= & .

In contrast with the generic irreversible behavior, we
find that the system can instead follow a reversible path
over a range of field below threshold, if the initial
configuration is chosen to be the one that is stationary at
F =FT+. We find that the configuration follows a unique
path as a function of field for F increasing or decreasing:
Over a finite range of fields, no phase jumps. For large
systems in two dimensions, FT=1.49+ 0.01 and the re-
versible range has width 0.80+ 0.03. Such a regime of
reversible behavior had been found in mean-field theory
for a distribution of pinning strengths with a lower
bound, but perhaps it is somewhat surprising that this
behavior exists in a finite-dimensional system. '

In the reversible regime, the difIerential polarizability
is uniquely defined, i.e., gt =g~ =g. We find that in two

dimensions, gT —(g(f))—~f~
' over two decades in ~f~
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FIG. 2. Linear polarizability g vs reduced field f for various
system sizes in two dimensions and two different approaches to
threshold. The solid symbols show the behavior for the irrever-
sible approach for a 256 system, while the open symbols show
the behavior in the reversible region as the field is decreased
from threshold. The lines show fits by the infinite-system form
Z=Zr C~f~, with gT the polarizability of an infinite sys-
tem at threshold.

for a 256 system, with y = —0.37 ~ 0.05. We have as-
sumed that gT is independent of the approach to
threshold —as suggested by the data. ' ' Note that,
within our error estimates, yl =yP (but with different
amplitudes for the singularity) in spite of the radical
difrerences in the nonlinear behavior for the reversible
and irreversible histories.

In order to investigate the linear polarizability further,
it is useful to consider its decomposition into contribu-
tions from the eigenmodes, with eigenvalues k, for the
linear relaxation towards the stationary metastable
configuration. We have calculated the smallest eigenval-
ues ~Xp~ & ~X~ ~

& in the reversible regime. The
low-lying eigenmodes are found to be well localized, with
the localization length approaching a constant as
F ~ FT . The smallest eigenvalues approximately behave
as ~X ~

—(f f)", where fo—=0 and the other f are
positive, with p =0.50~0.01. The modes thus appear to
act as localized, almost independent, degrees of freedom
each approaching a saddle-node bifurcation at the fields
fFT+ +f jt, with the expected individual-degree-of-
freedom exponent p =

2 . Similar results have been
found for related models. ' Of course, once the field
exceeds threshold, the lowest mode becomes unstable
and the linear analysis no longer applies.

The linear polarizability can be simply related to the
density of states p(k) and the mean-square polarization
of the localized eigenmodes. We conjecture a scaling
form (consistent with our results from the lowest
modes)"

p(x) —z P(x/~f ~~),

with the scaling function p(~) const, yielding a
power-law density of states at threshold and the ex-
ponent relation y~

= —pa. The apparent equality of the
exponents yI for the reversible and irreversible histories
suggests that the scaling form Eq. (2) will obtain with
both histories, but with different scaling functions p: In
the reversible regime, p is zero for small values of its ar-
gument u while in the irreversible regime, the distribu-
tion of almost unstable modes will give rise to a linear
density of states and hence p (u) —u' ' for small u.
In two dimensions our results imply a =0.74+ 0.12.

The characteristic lengths involved in the threshold
critical phenomena can be investigated by the scaling
with linear dimension L of various quantities, which we
generally expect to be functions of L/g, with g an ap-
propriate correlation length. The simplest quantity is the
rms width of the distribution of threshold fields FT(fP;l),
which fits HAFT(L)-L, yielding a finite-size-scaling
length exponent vT =1.05 ~ 0.04 in two dimensions.

From Fig. 1, we can make an estimate of a charac-
teristic length scale which controls how finite-size eA'ects
cause a crossover in the critical behavior of the irreversi-
ble path. In two dimensions, we find that this length
diverges with an exponent v„=1.0%-0.2, which is con-
sistent with the vT found from AFT(L).

The finite-size behavior of the linear polarizability
along the reversible path, shown in Fig. 2 for two dimen-
sions, can be scaled to fit'' a single function of Lf",
with vI=0.4~0.1. This vl is much less than v, and vT,
so that the finite-size corrections in this regime are far
smaller than in a hysteretic path, suggesting a second,
distinct correlation length. The scaling function can be
understood in terms of the domination of the singular
part of the linear response by a single degree of freedom
as f 0, which contributes a term to g of order

f "/L . This yields the scaling relation dvI =p —yi,
which is consistent with our numerical results in two di-
mensions and also with mean-field theory.

The various finite-size-scaling correlation-length ex-
ponents can be compared with a general bound which is
essentially due to the independence of diff'erent parts of a
random system. It has been proven' that in a random
system any finite-size-scaling length that can be defined
in a certain probabilistic manner (essentially in terms of
the probability that a finite system behaves as if it were
above threshold) will, if it diverges, do so with an ex-
ponent vf ~ 2/d. The exponent vT defined from AFT(L)
must (up to minor technicalities) obey this bound, con-
sistent with our numerical results in two dimensions.
Preliminary data also suggest that vT satisfies this bound
in one dimension.

Because the generic irreversible approach to threshold
is triggered by a series of local thresholds of subsystems,
we would expect that the approximate independence of
these subsystems would yield a finite-size-correction ex-
ponent for the polarization which also satisfies the
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bound, v„~ 2/d, consistent with the numerical results.
Indeed, it is reasonable to attribute these finite-size
corrections to an intrinsic correlation length of the
infinite system —diverging with the same exponent—which characterizes the size of the "avalanches"
which occur when a local mode goes unstable. This
clearly merits further investigation, and perhaps suggests
a route to relating various exponents. It also suggests
possible parallels with other "avalanche" phenomena
found in a variety of different systems. '

The finite-size-scaling exponent vl in the reversible re-
gime is more problematical: It clearly violates the 2/d
bound. This unexpected feature is presumably due to
the infinite-range correlations which persist due to the
special preparation of the system in its threshold
configuration, which is a unique state determined by the
whole system. '

In summary, we have numerically investigated the
critical behavior and finite-size scaling in a simple model
of charge-density waves as the threshold field is ap-
proached in the pinned phase. We find two distinct ap-
proaches to threshold, characterized by some diAerent
and some similar exponents and at least two distinct
lengths which diverge at threshold. The relationship be-
tween the various exponents and also the connections
with the critical behavior above threshold are both sub-
jects of continuing investigation. Webman ' has studied
a simplified model of CDW's below threshold which does
not have jumps. The exponents he finds are thus likely
to be for a diAerent universality class.
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