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Roughening-Induced Deconstruction in (110) Facets of fcc Crystals
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A chiral four-state clock-step model is introduced to describe the deconstruction and roughening of
missing-row-reconstructed (110) facets of fcc crystals. Unlike simple cubic (110) facets, a reconstruct-
ed rough phase is absent. Roughening induces a simultaneous deconstruction transition, which at zero
chirality has central charge c =1.5 and both Ising and conventional roughening critical exponents.
Pt(110) and Au(110) are suggested as realizations of this at small chirality, where this transition has the
character of an incommensurate melting transition into a rough incommensurate missing-row Quid.

PACS numbers: 64.60.Fr, 68.35.Md, 68.35.Rh, 82.65.Dp

The interplay between surface reconstruction and
roughening leads to intriguing new types of critical phe-
nomena. For unreconstructed surfaces it gives rise to
preroughening transitions' and for reconstructed sur-
faces to the roughening-induced deconstruction phase
transition described in this paper. Recent experimental
evidence suggests that Ni(110) and also Ar(111) are
possible realizations of preroughening. The missing-
row- (MR-) reconstructed (110) facets of Pt(110) and
Au(110) are being studied extensively. At first the
possible coupling between surface roughening and decon-
struction was overlooked, and the transition was believed
to be simply Ising-like. Villain and Vilfan pointed out
that surface roughening should be expected to play a
role. Indeed, the most recent experimental results for
Pt(110) indicate the presence of step excitations.

First, let me point out a fundamental diA'erence be-
tween MR reconstruction in simple-cubic (sc) and face-
centered-cubic (fcc) (110) facets: Fig. 1 versus Fig. 2.
The MR order in Fig. 1(a) can be characterized by an

angle variable, O=xn„representing the two possible po-
sitions of the top rows, n, =1,2(mod2). Consider wall

and step excitations. Walls, see Fig. 1(b), do not change
the surface height, dh =0, but couple to the reconstruc-
tion, d8=tr. They have a topological charge (do, dh)
=(tr, 0). Surfaces where walls are more favorable than
steps, R =E„/E, & 1, deconstruct first and only roughen
later. Steps, see Fig. 1(c), have a topological charge
(d0, dh) =(tr, ~1). This suggests that steps couple to
both order parameters, and that surfaces with R & 1

roughen and deconstruct simultaneously. This is not so.
We can disentangle the order parameters by switching
the two MR labels after each step, I9 0+x. A better
way is to represent the MR order by parity; define Ising
spins as S„=exp(itrh„) Figu.re 1(c) illustrates that the
antiferromagnetic spin order persists across steps, and
that steps do not couple to the MR order. A sc (110)
facet with R & 1 roughens first, and then enters a recon-
structed rough phase, followed by an Ising deconstruc-
tion transition at a higher temperature (T). The re-
stricted solid-on-solid (RSOS) model shows this type of
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FIG. l. (a) Missing-row-reconstructed simple-cubic (110)
facet, (b) with a wall excitation, and (c) with two steps.

(c)

FIG. 2. (a) Missing-row-reconstructed face-centered-cubic
(110) facet, with (b) a wall, (c) two clockwise steps, and (d)
two anticlockwise steps.
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behavior; ' it describes checkerboard-reconstructed sc
(100) facets.

The (110) facets of fcc crystals, e.g. , Pt(110) and
Au(110), have an anisotropic body-centered-type struc-
ture. Atoms in adjacent layers are not located on top of
each other, but on top of the plaquettes. This MR order,
see Fig. 2(a), is characterized by an angle variable
0= —'zn„representing the four possible positions of the

top rows, n, =1,2, 3,4(mod4). The MR state is twofold
degenerate because at a specific surface height only
0=0,x or only 0= ~

& z can be realized. Again we can
distinguish between walls and steps, see Figs. 2(b)-
2(d), and identify their topological charge (dO, dh). At
every d0=+ & z type domain wall the height change is

odd (the steps). At every dO=x type domain wall the
height change is even (including the walls with dh =0).
From Fig. 2 it will be clear that it is impossible to
redefine the 0 variables such that steps do not couple to
the 0's. The MR and roughening order parameters can-
not be disentangled. fcc (110) facets with R ) 2 behave
diAerently from their sc counterparts; roughening in-

duces a simultaneous deconstruction transition.
This absence of a reconstructed rough phase in fcc

(110) facets poses the question about the nature of the
transition. Earlier experimental results for Au(110)
have been interpreted in terms of R & 2, since Ising-type
critical exponents are observed. But we will see that the
roughening-induced deconstruction transition at R & 2

has Ising-type exponents too.

It is possible to model fcc (110) facets by an aniso-
tropic body-centered SOS model, but the required in-
teraction range makes this model not very palatable to a
numerical finite-size-scaling (FSS) study. In the MR
structure the top layers are compressed and buckled.
Therefore the microscopic domain-wall structures will be
less sharp than shown in Fig. 2. They might have a
width I„., of up to several unit cells, similar to domain
walls in physisorbed monolayers. ' This relaxation does
not aff'ect the topological charge, nor the nature of the
phase transition. Domain walls can exchange charge at
intersections and dislocations, but the total charge is
preserved. These merging rules, together with R, deter-
mine the universality class of the phase transition. '

Also the observed shift in diA'raction peaks reflects only
the charge, ' not the internal structure of the domain
walls. '' The peak shift indicates the appearance of an
incommensurate (IC) MR (fluid) structure similar to
those in adsorbed monolayers. ' The shift reflects the
lateral translation of the MR unit cell between domains
at opposite sides of a step.

Consider the following cell-spin model. Imagine a rec-
tangular lattice oriented along the grooves of the missing
rows. Each cell, i.e., the unit cell of this lattice, is large
compared to the MR unit cell, at least of order l, but
small compared to the correlation length (which is large
close to T, ). Fluctuations at length scales smaller than
l„, are integrated out. Associate with each cell a 0„
=0, 4- —,

' x, z variable, to represent the four MR states.
Consider the partition function

Z = g exp, g [K„,cos(0, „,—0, „,+ ~

—6)+Q„,cos(20„„,—20, + ~)
IO I I7, f71

+K cos(0, n On+I nt)+Q cos(20, 20 +) m)] Z6v(jd0= ~
2 tt)l I ) .

This is a four-state clock model, with chiral-symmetry
breaking, 6,. Every configuration is weighted by a six-
vertex (6V) model. The walls and steps follow the bonds
of the lattice. The 0 variables describe their position and
also the MR aspect of their topological charge. In a 6V
model arrows are placed on the bonds of a lattice such
that the flux of arrows is zero at all vertices. In Eq. (1)
this lattice is not fixed, but is the annealed fluctuating
lattice, formed by the d0= ~

2 z domain walls of the
clock model (the dO=n walls do not change the height).
The 6V arrows represent the change in height at the
steps (similar as in Ref. 1). K„, Q„„and 6 represent the
step and wall energies. These depend only on d0, be-
cause the structure of up and down steps, dh = + 1, is
the same, the left-right symmetry in Figs. 2(c) and 2(d).
3, represents the energy diAerence between clockwise,
d0= —,

' z, and anticlockwise, d0= —
& z, steps. K„and

Q„represent the energies of kinks. Steps and walls will

interact; L is an example of a step-step interaction that

favors up-down step order. I believe that Eq. (1) con-
tains all interactions essential for the nature of the phase
transition.

Chiral clock models without these novel height degrees
of freedom are familiar from the theory of IC adsorbed
monolayers. As in those models, ' a fermion-type
analysis is possible in the strong-chirality limit. Villain
and co-workers proposed a theory for Pt(110) which is

equivalent to this limit. It leads to the exactly soluble
one-dimensional Hubbard model. The fermions repre-
sent the (dO, dh) =( —, n, + 1) steps, and their spin the
step height dh =+'1. The (dO, dh) =(n, 0) walls are
viewed as bound states of fermions with antiparallel
steps. The anticlockwise steps are frozen-out A couples
to the chemical potential of fermions. Villain and co-
workers find a Pokrovsky-Talapov- (PT-) type transition
where the surface roughens and deconstructs simultane-
ously. This deconstruction is only partial, however; the 0
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variables retain IC-Aoating-solid-type order. Disloca-
tions must be added to the fermion Hamiltonian, i.e.,
that quartets of fermions with total spin zero can annihi-
late and create each other, ' to describe the melting of
the MR order.

I chose to focus on the small-h, limit. This is the
theoretically most interesting limit. Moreover, the ob-
served small peak shift in Pt(110) suggests a small A. I
studied numerically the FSS behavior of semi-infinite
strips. The details will be presented elsewhere. I chose
L =0 and isotropic interactions K„=K and Q„=Q„,.
Since the maximum accessible strip width is quite small,
N ~ 7, the results are not as conclusive as in similar FSS
studies for models with less degrees of freedom per bond.
Consider (tt, k)-type boundary conditions, with 0(n
+N, m) =8(n, m)+p and h(n+N, m) =h(n, m)+k,
and calculate the free-energy diA'erences, rl (p, k )
=N [f(P, k ) —f(0,0)]. These boundary conditions force
specific walls and steps into the system. The vanishing of
g(rr, O) indicates the disappearance of the MR order.
The vanishing of rl(0, 2) indicates surface roughening.
rl(rr, 1 ) represents the free energy of a step.

Figure 3 shows the phase diagram at 6, =0. At small
R, where walls are more favorable, g(n, O) vanishes first.
The location of the deconstruction line follows from the
crossing points where the Nrj(zr, O) curves at successive
values of N cross. tl(zr, 0) scales with the correct Ising
universal FSS amplitude. g( —, rr, 1) and rl(0, 2) vanish at
a higher T. In the rough phase they scale as power laws:
Nri( —,

' x 1) = —,
' Ko and Nrl(0, 2) =2KG, with K~ the

roughness parameter. ' The location of the roughening
line follows from the condition Ng(0, 2) =rr, using the
fact that Ko = —,

' n at a Kosterlitz-Thouless (KT) transi-
tion.

The Ising and KT line meet and merge at R =2.0
~0.1. At first I expected the transition at R & 2 to be
first order: But it is not. Ising and roughening critical
behavior seem to be superimposed. The condition
Nrl(0, 2) =n and the crossing points of Nq(n, O) and
Nri( —,

'
rr, 1 ) converge to the same estimate for the critical

line. At its crossing points rl(zr, O) scales as Nri(n, O)
=0.81 ~ 0.03, consistent with the Ising value 2zx~
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FIG. 3. Phase diagram of the four-state chiral clock-step
model, at zero chirality (6=0), with R =E./E, , and tempera-
ture T in units of E, .

(with xH =p/yT = —„' ). A power-law fit to the tempera-
ture derivative, d(NrI)/(dT) =N", gives the Ising-type
value yT =1.0 ~0.1 for all three g's. The central charge
c follows from the FSS scaling of f(0,0). The location
of the maxima of c scales with N towards again the same
critical-line estimate. The value of c at these maxima
converges to c=1.50+ 0.05 along the entire line. The
step free energy rl( —' zr, 1) has a surprising universal am-
plitude, Ntl( 2~ rr, 1) =1.03 ~0.03 (corrections to scaling
in this quantity are virtually absent).

Rewrite each 0 variable in terms of two coupled Ising
spins; 0=0, —,

'
rr, ~, —'x as (S,T) =(++),(+, —), ( —,

—), ( —,+). The 6V arrows are located on the bonds of
the joint lattice formed by the Bloch walls of both Ising
models, but bonds where their Bloch walls overlap are
excluded. Redefine the spins such that the 6V model ar-
rows sit on the Bloch walls of one Ising model only. This
can be achieved in two ways: define o. =ST and keep 5
or keep T; I call this 5-T invariance. Next, the o spins
and 6V arrows can be combined into height variables h,
of a RSOS model, as o =exp(ixh ), like in Ref. 1.

!
Therefore, Eq. (1) is equivalent (at 5=0) to an Ising
model coupled to an RSOS model,

Z= g exp g [ —, K, T,T, +( —, K, T„T,+Q)[l —2(h, —h, )2]]
Ih, , T,I,&r, r'&

(2)

with K, =K, =K, and for simplicity L =0. A duality
transformation on the RSOS degrees of freedom maps
Eq. (2) into an XY model coupled to an Ising model.
This is essentially the same model studied in recent years
in the context of the fully frustrated XY model. ' Monte
Carlo results for these models are consistent with my nu-
merical results.

A central charge c=
& is associated with conformal

field theories with supersymmetry, ' invariance under a
continuous transformation that mixes massless fermion

t

and boson degrees of freedom. An example of this is the
Ising deconstruction critical point inside the rough phase
of sc (110) facets. ' Another example is the K, =0 limit
of Eq. (2) where the Ising and roughening degrees of
freedom decouple. Supersymmetry holds only asymptot-
ically at the Ising critical points in the rough phase.
Also, it does not impose a connection between the Ising
and roughening T, 's, since the h, behave in the rough
phase as nondiscrete variables, whose magnitudes can be
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rescaled freely. So, a reconstructed rough phase exists at
K, =0. It persists at small values of K„because at
K, =0 the K, interaction has an irrelevant scaling index,

yz =3. S-T symmetry implies the same behavior in the
opposite, K, =0, limit. Our model at K, =K, is the
separatrix between these two regions.

S-T invariance implies that K, =K, . It represents our
inability to disentangle the roughening and MR degrees
of freedom. S-T invariance has the character of a
fermion-boson ex "hange too. On the one hand it is

weaker, only a discrete Z2-type invariance. On the other
hand it is stronger, an exact invariance of the model that
holds also away from criticality. It imposes the link be-
tween the roughening and deconstruction that requires
the two transitions to coincide.

In Pt(110) and Au(110), the clockwise and anticlock-
wise steps have diflerent energy, E,, =(I —D)E, vs E,,
= (I +D)E, . Assume that for small D at R & 2 the
phase diagrams of Eq. (I) and the conventional chiral
three-state clock model' look alike: an IC melting tran-
sition at small D, and a Lifshitz point, at an intermediate
value of D, where the critical line splits into a PT and
KT line with a (rough) IC (MR) floating solid phase in

between (the fermion description mentioned above).
I suggest that Pt(110) and Au(110) are realizations of

this IC melting transition at small D. The surface simul-

taneously roughens and undergoes a IC-melting-type
deconstruction transition with respect to the MR degrees
of freedom. The rough IC MR fluid phase contains
more clockwise than anticlockwise steps. This causes the
shift Q in the liquidlike half-order difl'raction peaks.
Compared to the correlation length g, Q vanishes at T,
as Q-g '~. If xg & I, all critical exponents must
remain the same as at D =0. ' This is not evident for

xg =1, but numerical evidence for the chiral three-state
clock model supports xg =1 and no change in the ex-
ponents. ' Assume that also in our case xg =1, and that
all critical exponents are the same as at D =0. This im-

plies a linear vanishing of the misfit Q —~T —T,
This is remarkably consistent with the ob-

servations for Pt(110). Robinson et al. find that the in-

tensity of the half-order peak scales as T —T,
~

P with

P=O. I I and the peak width as g
' —T —T, l,

" with

yT=1.05, both consistent with my values at D =0, and

they observe a linear vanishing of the misfit.
In my FSS calculation, the pitch appears as the com-

plex part of the next-leading eigenvalue k~ for periodic
boundary conditions, m+iQ =In(ko/X~). m is propor-
tional to the peak width in the rough IC fluid phase and
vanishes in the MR phase. At (R,D) =(3, —, ), the cross-
ing points of rI(rr, O) and rI( —,

' x, I) converge to a higher
estimate for T, than the crossing points of rn. This indi-

cates that we have passed the Lifshitz point. At
(R,D) =(I, —„' ), the crossing points of Nm and the Nrl's
give the same T, within the numerical accuracy (2%).

In Pt(110), Q saturates at en=(To —T, )/T, =0.06 at
Q =0.03 reciprocal-lattice units, and for e ( eo the corre-
lation length is smaller but of the same order of magni-
tude as the wavelength of the IC fluid, g

' -m
=2Q=e. In my model Q takes a similarly small value
at (R,D) =(3, —„' ). Assuming a single transition, I find
that the temperature derivatives of m, rI(x, O), and
r)( —, x, l) scale with an exponent ye=0.95~0.5. The
pitch Q scales at the crossing points of m consistent with
a valence xg =1, but not fully convincingly. This should
be expected. The wavelength in the IC fluid is large (set
at small N by pseudo-one-dimensional behavior), while g
is limited by the strip width as ( ~N. At N=7 these
two length scales just barely start to compete.
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