
VOLUME 66, NUMBER 7 PHYSICAL REVIEW LETTERS 18 FEBRUARY 1991

Onset of Defect-Mediated Turbulence
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Combining methods and ideas of dynamical systems theory with the usual stability analysis for ex-
tended hydrodynamic systems we show that defect-mediated turbulence is a generic consequence of a set
of physical properties which are shared by many systems. We show how the interplay between broken
continuous symmetries and the dynamics of patterns leads to a universal scenario for the onset of this
type of turbulence.

PACS numbers: 47.25.—c

The ubiquity of defect-mediated turbulence in hydro-
dynamic systems with large aspect ratios indicates that
the phenomenon calls for an essentially model-free inter-
pretation. Spatiotemporal chaos with nontrivial dynam-
ics of defects has been observed in Quid thermal convec-
tion, ' in nematics under electrohydrodynamic convec-
tion, in surface waves, in numerical simulations of
certain partial diA'erential equations in 2+1 space-time
dimensions, etc. In this Letter we report on a theory
that shows that, indeed, the phenomenon is expected to
appear when rather general conditions are met. These
are the following.

(i) The system exhibits a fundamental instability to-
wards a one-dimensional cellular pattern, e.g. , convection
rolls. These patterns exist for a range of parameters and
we shall assume that in this range no bounded, biperiodic
solutions can exist.

(ii) The system has a large aspect ratio in one dimen-
sion (to be taken as an infinite x coordinate) and a medi-
um extent in another dimension (the y coordinate). The
third dimension (the z direction) is small, and it deter-
mines the scale of the cellular pattern. The extent of the
system in the y direction will be a central parameter in
our theory.

(iii) The underlying hydrodynamic equations possess
continuous symmetries (like translation and rotation)
which give rise to secondary long-wavelength instabilities
of the cellular structure, e.g. , skew varicose ' (SV).
We shall assume that the secondary instability involves
transverse and longitudinal modes; this assumption will
lead naturally to the creation of defects.

(iv) The highest-order spatial derivative in the hydro-
dynamic equations is of order m, and is linear in the
fields. This assumption will allow a direct link to dy-
namical systems theory.

When these properties hold, we establish" the follow-
ing generic scenario: Upon crossing the secondary insta-
bility, the fundamental cellular pattern destabilizes in
favor of another, spatially biperiodic stationary solu-
tion. ' The biperiodic stationary solution can be shown
to exist within perturbation theory, but in truth it is de-
stroyed in favor of spatially chaotic solutions by a mech-

u(x) =2ecos(tox)+6(e'), (2)
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FIG. 1. The phase diagram for the model of Eq. (1), with
g=25, from Ref. 10. The E and SV lines represent the Eck-
haus and skew-varicose stability boundaries, respectively. No
other long-wavelength instabilities appear between these boun-
daries. In the Boussinesq approximation for convection, the
phase diagram is similar, except that the skew-varicose line is
curved inward.

anism of the Kolmogorov-Arnol'd-Moser (KAM) type.
We show that when this happens, property (iii) leads
naturally to the appearance of defects in the pattern.
We conclude by identifying spatiotemporal chaos in such
systems as a state in which defects are randomly distri-
buted in space.

For concreteness and clarity we develop our considera-
tions on the basis of a convenient example which con-
tains all the needed generic features. This is the general-
ized Swift-Hohenberg' model treated in Ref. 10. It
reads

B,u+(U V)u =[a —(1+8 +By')1'u —u',
~here U=(Bye, —8„$), and V g=g[V(V'u) XVu] z.
Here, a and g are constants, and the terms involving g
are used to model the coupling to the z component of
vorticity in convection dynamics. The phase diagram
for this model is shown in Fig. 1. In the shaded region
the stationary solutions are of the form'"
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where e, ro, and a are related by a =3e +(1 —ro )
+6(e').

In this notation, co is the wave number of the one-
dimensional cellular pattern required in (i). The as-
sumption in property (iii) is realized in this model; it ex-
hibits a skew-varicose instability. Upon crossing the SV
line, the solution (2) is destabilized by long-wavelength
modes of the form

p[a(k, ro)eir (m+. )+b(k ro)eir ( —m+ +C.C.] .

Here, ro =(ro, O) and k=(k, k~) with k„~O and k~ (( I,
and k„/k~ is finite. One can show that such a mode
grows exponentially in time but gets saturated by the
nonlinearity. 8'ithin perturbation theory one can show
the existence of stationary, spatially quasiperiodic solu-
tions of the form

2ecos(rox)+ pla(k, ro)e"' +"'

The center manifold theorem' ' tells us that the rele-
vant dynamics takes place in the finite-dimensional sub-
space of the coordinates X„with n satisfying (6). In this
finite-dimensional phase space, the periodic spatial solu-
tions (2) are one-dimensional limit cycles, as seen in Fig.
2(a). Since we have a band of wave vectors of periodic
solutions, there is a band of limit cycles here. By Poin-
care mapping, one finds a line of fixed points, cf. Fig.

+ 6 (k, ro) e"' +"'+c.c.l . (3)

In order to see what is really happening one has to go
beyond perturbation theory. This is achieved by reduc-
ing the analysis of stationary solutions to a finite-di-
mensional dynamical systems problem. ' This is done
rigorously using the following scheme: Consider (1)
with t), u =0. Imposing for simplicity periodic boundary
conditions in the y direction, a natural basis for u(r)
=u(x, y) is

& (x,y) = g u„(x)e'""", (4)

where the width of the strip confining the system is 2xh.
Identify now a phase space 8 with coordinates defined

by X(x), where

~t)x&n (x)~n e z, p =o, &, 2, 3 ~

Equation (1) is rewritten as a "dynamical" system in the
form t) X=MX+N(X), with x playing the role of time.
The operator M is infinite dimensional and is block diag-
onal with blocks M„of the form

(c)

M„=

0
0
0

1

0
0

tr —(1 —n 2/h ) 2 ()

0
1

0
—2(1 —& '/lt ')

0
0

(5)

0

1~Ja&n /lt (6)

The part N(X) contains all the nonlinearities, and is not
needed explicitly. Thus, using property (iv), we have
turned the study of stationary solutions to that of an

infinite dimensio-nal dynamical system. We now proceed
to reduce this problem to a finite dimensional o-ne.

A straightforward calculation using the characteristic
polynomial of M„shows that bounded eigenmodes can
only exist when n satisfies the inequality

FIG. 2. The scenario for the onset of defect-mediated tur-
bulence in its phase-space representation. (a) The phase por-
trait in the domain of stability towards long-wavelength pertur-
bations. We see the periodic orbits corresponding to cellular
patterns. The two limit cycles represent the boundaries of the
band of allowed frequencies co in this domain. The Poincare
section P has codimension one. (b) The Poincare section P
and the line of fixed points AB which results from the section
in (a). Each fixed point has a stable manifold W, and an un-
stable manifold W„. (c) The Poincare section P in the long-
wavelength unstable domain. Each fixed point is now elliptic,
and a few invariant circles are shown. The chaotic orbits be-
tween them are not shown.
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2(b). It can be shown that each of these fixed points is

hyperbolic in the parameter space where the cellular
solutions are dynamically stable. "' ' [The stable and
unstable directions are solutions like (4), but with
Imk„~0.] On the other hand, upon crossing the secon-
dary instability (the SV line in Fig. 1), the line of fixed
point turns elliptic [Fig. 2(c); this happens when k be-
comes real]. The frequency of rotation depends non-
linearly on the amplitude [radius in Fig. 2(c)], and the
"dynamical system" is eff'ectively a nonlinear twist map.
Because of the x —x symmetry, this dynamical sys-
tem is reversible, and it is known' ' that in reversible
nonlinear twist maps the KAM mechanism sets in, leav-
ing irrational tori intact and generating a set of chaotic
solutions in between.

The conclusion is that, generically, upon crossing a
secondary long-wavelength instability there exist station-
ary, spatially chaotic solutions.

At this point we want to emphasize the role of these
stationary solutions in terms of the full time-dependent
problem, Eq. (1). We shall argue below that these solu-
tions have stable and unstable manifolds in function
space. Accordingly, we are led to conjecture that, if
these stationary states lie on the attractor, then they are
important in organizing the dynamics, like hyperbolic
fixed points of low-dimensional strange attractors. The
time evolution will approach one of the stationary states
on the stable manifold, will remain close to it for some
time, and will leave it along an unstable direction.

To see the existence of a stable manifold for the time-
dependent problem is easy. One examines the stability
of the solution (3) (in perturbation theory) to perturba-
tions of the amplitudes of the various components. This
amounts to looking at the dynamics in the truncated
equations for variations of the coefficients of the six com-
ponents e —' ' and e —' —" '. lt is easy to see that the
resulting dynamics is linearly stable, and the perturbed
solution returns to the form (3). In fact, the translation
invariance of the equations gives one zero eigenvalue,
and the relative translation between the main frequency
and the modulation gives a second zero eigenvalue. The
third eigenvalue is associated with the stability of p
about its saturation value, cf. (3). Three more eigenval-
ues are clearly negative.

To see that there are also unstable directions is also
easy. In fact, the solution (3) is, at least close to the SV
line, very close to the periodic solution (with p=0).
Therefore, it has still an Eckhaus instability for (very
sinall) g )0 which consists of perturbations of the form

'+ l g

The above discussion can be summarized in the follow-
ing way: Cellular solutions with wavelengths belonging
to the unstable domain are destabilized by long-wave-
length perturbations. Close to these periodic solutions
there exist other stationary solutions which are either
quasiperiodic or chaotic in space. Since these stationary

solutions have a stable direction for the time-dependent
problem, it is reasonable to expect that the dynamics will
allow a crossover from the cellular state to the quasi-
periodic or spatially chaotic states. In a second step, this
solution is going to evolve along its unstable direction.
This has interesting consequences, as we shall see now.

During this evolution, there are, generically, changes
in the total number of "rolls" (or numbers of extrema of
the stationary solution). The only way that one can dis-
card or add an extremum in the interior of the system is
by going through "phase-slip" events, which in (1+1)-
dimensional space-time amount to space-time disloca-
tions. At such a dislocation the solution vanishes identi-
cally for a brief moment. This process of phase slip is
exemplified in Fig. 3, in which we show a numerical
simulation of the escape route from the solution (3) in
1+1 dimensions. One sees that after hovering for a long
time near (3), the system evolves, where every now and
then a period in the solution is shed off' via a process of
phase slip; see also Ref. 20.

In 2+ 1 dimensions, an extension of these considera-
tions ' shows that if it were not for the y dependence of
the solutions, the solution would vanish identically on a
line, x =const. This is topologically unstable and in fact
the solutions will only vanish on spatial points, where the
topological defects get born. The explanation of the pre-
cise mechanism of the nucleation of topological defects is
beyond the scope of this Letter, and needs a special
study. But we stress that the main conceptual feature of
our approach is the realization that there is no qualita-

FIG. 3. Four frames at equal time-spacing for the time evo-
lution for the Swift-Hohenberg equation, with e =0.2 and
m =1+1.6932m. Note the process of phase slip.
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tive difference between the appearance of space-time
dislocations in the (1+1)-dimensional problem and spa-
tial topological defects in the (2+1)-dimensional prob-
lem.

Since the states from which the evolution results in to-
pological singularities are already spatially chaotic, the
singularities will be randomly positioned in space, as is
seen in defect-mediated turbulence, so that the space-
time chaos is a direct consequence of the space disorder
of stationary solutions.

Finally, we stress that our analysis makes no use of
any specific properties of (1). Therefore, the scenario
which we describe here will apply generically in systems
satisfying (i)-(iv).
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