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Persistent Differences between Canonical and Grand Canonical Averages in Mesoscopic Ensembles:
Large Paramagnetic Orbital Susceptibilities
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Disorder-averaged thermodynamic quantities within the canonical ensemble are expressed in terms of
fluctuations in the grand canonical ensemble, and are then evaluated for the diffusive regime. The par-
ticular example of persistent currents in Aharonov-Bohm geometries is addressed, and the harmonics of
the disorder-averaged current (which is —, C&p periodic) are obtained. The orbital susceptibility of a
mesoscopic system, disorder averaged over the canonical ensemble, may be large and positive, even for
systems which, on a larger scale, should exhibit Landau diamagnetism.
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Following a decade of intense research on the physics
of condensed-matter mesoscopic systems' one has been
led to expect novel phenomena in such systems. These
eAects usually vanish in the limit when all dimensions of
a sample become macroscopic. Among them there are
Aharonov-Bohm (AB) oscillations of the conductivity as
well as various mesoscopic fluctuation eAects. An exam-
ple of particular interest has been that of the persistent
circulating current induced in a mesoscopic ring by an
AB flux @.' An experimental demonstration of the
possible existence of such currents has been recently re-
ported.

Most mesoscopic eA'ects vanish when averaged over
the "disorder ensemble" consisting of many macroscopi-
cally identical systems, each having its own specific,
quenched, defect configuration. In particular cases, how-
ever, such eff'ects can have a correlated phase in diA'erent

members of the disorder ensemble. In such situations,
the signals associated with these ensemble members will
add up coherently rather than average to a vanishing
magnitude per sample. A notable example for such a
survival has been the (h/2e)-periodic conductance oscil-
lation as a function of the AB flux in mesoscopic cylin-
ders or arrays of rings. '" This suggests a fundamental
question of what are the conditions under which a given
mesoscopic eAect will survive the disorder-ensemble
averaging. In the particular case of the h/2e oscillations
of the conductance the coherent backscattering is the
relevant mechanism. '' It is this survival which permit-
ted the observation of these oscillations in, e.g. , macro-
scopically long cylinders to be made. '

In the case of persistent currents induced by an AB
flux, only an ensemble-averaged eAect could be observed
in the experiments of Ref. 10 which dealt simultaneously
with 10 mesoscopic rings. Of particular fundamental
interest is the observation that in this case the h/2e
harmonic will survive but only in the canonical ensemble
(i.e. , when the number of electrons in each member of
the disorder ensemble is kept fixed and flux independent)

in contrast with the grand canonical ensemble (in which
the chemical potential is fixed in each sample while the
number of electrons is allowed to vary with the flux).
This observation was first made in the 1D case in Ref. 6.
Bouchiat and Montambaux derived it for finite-cross-
section rings with very weak and very strong disorder.
They also observed the difrerence between canonical and
grand canonical ensembles in numerical simulations at
intermediate disorder and realized its generality.

This paper is devoted to the above question, using the
AB persistent current as an example, but the idea is
much more general. We derive an expression for the
diA'erence between canonical and grand canonical
disorder-ensemble averages. The latter averages are
known ' to be exponentially small for the problem at
hand. Using this expression we have determined the
average Fourier components of the persistent current
I(@),which imply some nontrivial properties of the elec-
tronic energy spectra as a function of +.

While the results we obtained come short by almost 2
orders of magnitude from explaining the experimental
results of Ref. 10, they lead to new and unexpected con-
clusions for, e.g. , the. orbital susceptibility of a macro-
scopic 2D electron gas when it is divided into many small
parts, of size scale L each. We now consider the
diA'usive case. Provided the number of electrons in each
of the parts is kept constant, the orbital susceptibility g
should depend on L as follows: Once L becomes compa-
rable to the phase coherence length L& (i.e. , h/ran= AD/

L~ is comparable to the Thouless energy E, =AD/L,
where D is the electron difT'usion constant), g changes
sign and remains of the order of the Landau susceptibili-
ty gl in 2D. With further decrease of L, g increases to
values of order gtE, /h))gt for 6—It/r~, 5 being the
mean level spacing at the Fermi energy. At finite tem-
perature T, It/r& should be replaced by maxfT, 6/r J It.
is straightforward to generalize the above to finite-
thickness slabs.

We start by deriving expressions for various averages
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where we take e=l. A crucial point for our analysis is
that in the canonical ensemble p can depend on @, and
vary from sample to sample,

p =&p)+6p(e), (2)

where () stands for the disorder-ensemble average.
From (1) we have
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(3)

provided Bp is small enough. Now we change the order
of derivatives and average over the ensemble. As a re-
sult, since ((80/8@)„)=0,

of the free-energy derivatives with respect to the AB flux
Let F(N, C&) be the free energy in the canonical en-

semble and A(p, &) be the grand potential (N is the
number of electrons and p is the chemical potential). '

From thermodynamics,

((8N) ') = I de& de) K(e&, e& ), (7)

The right-hand side of (6) can also be written as
(2A) '8((Bp)&v)/&)@; this form had been less generally
derived in Ref. 14. The variation of p with N in a given
sample at T 0 is similar to that of a typical level.
Thus the averaged total current is proportional to the
mean-squared fluctuation of a single-level current. This
prediction for the lowest harmonic of I(&) agrees with a
strong disorder result of Ref. 9. The general validity of
these results was also checked numerically.

We have derived Eq. (6) for the particular case of per-
sistent current in a ring with AB flux @. In fact, both
Eq. (3) and the equality of its last term with the middle
expression of Eq. (6) are completely general. They hold
for appropriate derivatives of the free energies with
respect to any external parameter for arbitrary sample
geometry and including all interactions. ' ' The useful-
ness of Eq. (6) is in enabling us to evaluate canonical
averages using grand canonical ones which are usually
much easier to compute.

We now apply Eq. (8) to calculate I(&) in the diffu-
sive regime, using also the results of Ref. 17 for ((BN) ),

(4)

We have used the identity N= —BQ/Bp. Bp can be
easily connected with 6'N —the number-of-particle vari-
ance in the corresponding grand canonical ensemble with

p =(p), 8p =SN(BN/Bp)~ '. Thus,

a(aN)'
8@ p =&@&

&(~N)') =& &.
2

(6)

For the last equality we used ((8N/Bp) ') =6, which is
valid up to higher-order corrections in g =E,/h.

where averaging on the right-hand side is taken at fixed
p =(p). Since N(p =(p)) is our fixed, C&-independent N,
we can substitute 8(6N)/8@ for BN/8&1&:

K(e&, e2) =— 2

z Re+ e + +iDq
Ila T(p

Here a can be x, y, or z; s is the degeneracy (say, spin),
and for a sample with dimensions L„XL~,XL, (L, is a
ring perimeter), q =n P, = J, (n„/L, ) . At zero Aux

n, =0, + 1, + 2, . . . . Equation (8) is the result of the
summation of the usual diff'usion and Cooperon dia-
grams. ' We can consider the correlation of the number
of particles at different N (@& and N2). In this case we
can keep using Eq. (8) but for the diffusion contribution,
n, =integer+ (&I&&

—&I&2)/@p, while for Cooperon contri-
bution, n =integer+ (N&+@2)/&I&p, where Np =6/e.

For the calculation of the derivative (8) we consider
the difference ([8N(4)] —[SN(0)] ). For this differ-
ence K(e&, e2) can be taken in the form (8) since this
difference is determined by e], e2 close to the Fermi level.
Since +] =Nq, the flux dependence of the diAusion con-
tributions cancel while the Cooperon contributions lead
to

where the correlation function of the densities of states
K(e&, ez) at small enough e —=E~ —

Eq (i.e. , e~
—e2&&1/r,

where r is the time of a mean free path, pr «1, 6 =1)
equals

2

2

([8N(e)]) = —Reae 8+ n, 2&r [e +i/r++iDx [nz/L~+n, /L, +(n„+2&I&/&I)&p/L&]]

It is clear from (9) that ((p&F/8&)&v) is periodic in & with a period &p/2:

I exp i4n (10)

For simplicity, let us consider the 10 case where L~, L, 0 so that DL~ is much larger than E, =DL . Then in the
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sum (8) all terms with nonzero n~ or n, can be neglected. Performing the sum in Eq. (8) with the Poisson sum formula
we find for I

2
2g /0 OO @2

J de~ deq d@ Re e —+ +i4x E,4~' 84 zg @p2

—4i re N/N0
e

We change the integration variables to e+ =e~ ~ t. 2 and find

—ims 4 d E,I = — dt.'+ exp —2im
de+ [mf

iE+ 7@ 1

E, zq,
+exp —2im

i/2-
i 6+ T@ 1

E, rq,
(12)

where the imaginary parts of the roots should be nega-
tive at m & 0 and positive at m & 0. As a result

is h, —2mI = exp,
&

sgnm .~p E,z, '' (13)

Therefore, for E,z+& m, I is independent of E,
(i.e., of disorder) and of m, and it is of order A. Near
@=0

2 ~ oo

mI =2s 6
@O m=— ~'o

(14)
This is valid for E,z~&&1&&hz~. Equation (14) can also
be obtained directly from Eq. (9). We note that when
z&

' decreases from O(E, ) to O(h) the curvature (14)
increases from O(A) to O(E, ). The latter value is the
expected order of magnitude' ' as r+

To summarize our results: A (h/2e)-periodic para-
magnetic persistent current is obtained in the canonical
disorder-ensemble average. Its (E,/6) 'l first harmonics
are equal to 4eh/x h, for T, z~ ~A. With increasing z~ '

and/or T the harmonics are progressively cut oII' with
only the lowest ones remaining at T, r+ '-E, . The max-
imal amplitude of the average current decreases from
O(e(E,A) 'l /h ) to O(ehlh) when T and z~ ' increase
from ~h, to E,. The variations of Bp and a typical
single-level energy with C are of O(A). Since the phases
of the harmonics Bp(+) are random, the random Iluc-
tuations of 6p are over a Ilux scale of O(&p(h/E, ) ' ).
This leads to a typical single-level current of
O(e(E,d, ) 'l /h. ). It is interesting to note that the Ilux-
independent part of the Iluctuation (hN ) found in Ref.
17 is much larger than the flux-dependent part,
(6N(&) )„—1, found here. This implies that the usual
"ergodic" hypothesis is not valid for the ensemble versus
the flux-dependent fluctuations of the levels.

The size of the persistent currents found here comes
short by about 2 orders of magnitude from explaining
the experimental results of Ref. 10. Likewise, when ap-
propriate values, of the order of 0.04, are used for the
electron-electron interaction constant, the theory based
on the latter' ' also yields results an order of magni-
tude smaller than the results of Ref. 10. To explain the
latter, several harmonics of (I)(&) will have to be as-
sumed, or further mechanisms such as the operation of

the charging energy ' or certain properties of the spec-
trum jE~.(&b)j (Ref. 22) will have to be invoked. Results
very similar to ours were obtained independently by
Schmid, who in addition emphasized the role of elec-
tron-electron interactions in ironing out changes of the
electrons' charge density.

These results are generalizable to the case of singly
connected quantum dots. The behavior mentioned at the
beginning of this paper can be obtained for the canonical
disorder-ensemble average of the orbital magnetic re-
sponse. Equation (3) and subsequently Eq. (6) hold for
a singly connected quantum dot. Employing these rela-
tions, one can show (details will be given elsewhere) that
the canonical free energy of a quantum dot depends on
the flux in the same way as in a ring. For small fluxes
this leads to the linear susceptibility described above.
This is a novel mesoscopic effect The tra. nsition from
the bulk diamagnetic response to the atomic one with de-
creasing L is not monotonic: g changes sign and in-
creases markedly in an appropriate regime. All of the
above is valid when the electrons are diffusive The.
crossover of g to possibly large negative values at sizes so
small that disorder is irrelevant will be considered else-
where.

The diAerences between the canonical and grand ca-
nonical behavior found here are due to energy levels
crossing a given chemical potential p from above or from
below and their contribution to the canonical energy sub-
tracting from and adding to, respectively, the grand po-
tential. Since the curvatures of such levels having
crossed p from above or below are opposite, they give
contributions of the same sign, which is easily seen to be
paramagnetic, to g.

The efrect can be understood since @ breaks time-
reversal symmetry and changes the Wigner-Dyson level
correlations from orthogonal to unitary. This means, for
example, that small energy separations will typically in-
crease (quadratically at &=0) with N. It is the lower
member of each such pair, having a larger thermal popu-
lation, which has a negative curvature at N =0 as a func-
tion of @. This causes the average orbital susceptibili-
ty to be paramagnetic, in marked distinction to the dia-
magnetic sign found in the ideal, cylindrically symmetric
and integrable case.

The spin-orbit interaction is not expected to change
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the sign of the average susceptibility even in the strong
spin-orbit scattering limit. This statement does not ap-
ply for a strictly one-dimensional system in accordance
with the analysis of Ref. 25. This issue as well as the
crossover to ideal systems and the role of electron-
electron interactions ' ' ' ' will be discussed else-
where.
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