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Useful Theorem on Vanishing Threshold Contribution to sin 8~
in a Class of Grand Unified Theories
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Superheavy particles near the unification threshold introduce modifications to precise grand-unified-
theory (GUT) predictions. We establish a very useful and general theorem valid in a class of models
possessing the custodial symmetry SU(2)I x SU(2)R xS U(4)& xP at the highest intermediate scale, ac-
cording to which the one-loop GUT-threshold contribution to sin 0~ by every class of superheavy parti-
cles (gauge bosons, Higgs scalars, and additional fermions) vanishes. The result also applies with super-
symmetry, infinite towers, or higher-dimensional operators, and is independent of other intermediate
symmetries at lo~er scales.

PACS numbers: 12.10.Dm

After the discovery of the standard gauge theory
SU(3)~xSU(2)1 &&U(1)t. (=G„), many attempts have
been made towards achieving a truly unified theory with
a single gauge coupling. Currently, a number of grand
unified theories (GUTs) such as SO(10), SO(18), E6,
and others including supersymmetric SU(5) are being
taken as prospective candidates awaiting experimental
tests. Interesting predictions, including proton lifetime

(r~), sin On, fermion masses, strong and weak CP viola-

tions, and an attractive inflationary big-bang cosmology,
are found to be possible in models with one or more in-

termediate gauge symmetries (IGSs). While the origin
of some GUTs might be traced to the higher-dimensional
unification with gravity, certain others with W = 1 super-
gravity emerge as eAective low-energy theories of super-
strings. Although earlier predictions included contribu-
tions of particles su%ciently lighter than the unification
mass (MU), the eAective-gauge-theory approach' has
demonstrated that there could be very significant GUT-
threshold eA'ects due to superheavy masses (=MU). In
models such as SO(10), SO(18), E6, and others, Higgs
scalars necessary for spontaneous symmetry breaking
occur as small components of much larger representa-
tions, giving rise to many superheavy scalars with masses
around MU and larger threshold modifications to the
predicted values of i~ and sin 0~. More specifically, a
factor-of-10 nondegeneracy among the superheavy
masses has been found to decrease sin 0~ by 0.02 in

SO(10) with the IGS SU(2)l &SU(2)R XU(1)q —1.

x SU (3)r ( =—G pp j 3 gal Wg2+ ) compared to the earlier
results using the mechanism of decoupling P (=parity)
and SU(2)R breakings. Since the Coleman-Weinberg
mechanism restricts the mass of only one scalar com-
ponent in the larger Higgs representation of a GUT, the
assumption that all superheavy-component masses difIer
from MU by a factor of 10 is reasonably stringent. We
use the notation Gp24p to represent the Pati-Salam gauge
group, SU(2)1 xSU(2)z SxU(4) c Px, including parity
(=P), the left-right discrete symmetry, with equal cou-

plings for SU(2)L and SU(2)z (gal =g2&). 6224 repre-
sents the same gauge group but without P (gal &gqp).
When SO(10) breaks through the vacuum expectation
value of the G224 singlet contained in the Higgs represen-
tation S4 (210), Gq24p (6224) survives as an IGS. GUT-
threshold eA'ects in SO(10) including Gqq4 and other
IGSs have been investigated in Ref. 6 and found to
modify sin On (r~) by 0.02-0.06 (2-4 orders of magni-
tude) for an assumed nondegeneracy factor of 30 in su-

perheavy Higgs-scalar masses.
The purpose of the present Letter is to point out, for

the first time, the existence of a class of models contain-
ing G224p where the one-loop contribution to the GUT-
threshold correction on sin 0~ vanishes according to the
following theorem and proof.

Theorem. —In all grand unified theories where the
custodial symmetry G224p occurs at the highest inter-
mediate scale (Mp (Mp), the one-loop GUT-threshold
contribution to sin 0~ by every class of superheavy par-
ticles vanishes.

Proof We use .—renormalization-group equations
(RGEs) for the coupling constant g;(p) of the gauge
group G; occurring in the IGS or the standard symmetry
expressed as 5 =G

t x G2& . -

6- G»«- G„-SU(3)~x U(I ),. (2)

The superheavy-particle effects on g; (p ) for p =M& in

, + ln + gb;, J a, (p)
Q( M2 27' p 8~ j p p

(1)

i,j =1,2, 3. . . , where a;(p) =g; (p)/4', a; (b;~) is the
one- (two-) loop coefficient of the p function, and p (M)
is the lower (higher) scale. At first we establish the
theorem in the simplest case of any GUT 6 [=SO(10),
SO(12), SO(14), SO(16), SO(18), SU(16), E6, etc. ]
with the single IGS
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supersymmetric (SUSY) and non-SUSY GUTs are well

known to have the form, at the one-loop level, '
i =2L, 2R, 4C,

X;(p)
(3)

ag 12m

1

a (u)
where a~ corresponds to the GUT coupling. It must be
stressed that our proof does not depend upon the exact

nature of the expression for X;(p). It goes through in a]l
models so long as the threshold correction has the form
(3). The contribution of at least the low-lying com-
ponents in infinite towers has the form (3). Also the
string-loop effects, demonstrated to have the form (3)
for the standard effective theory (i =2L, Y, 3C) are ex-
pected to retain the same form for G224p. Using (1) and
(3), we obtain

MU
ln

Mp Q2I +Q2R 2Q4c
22r(a ' ——', a, ') —( 3 aY+a2z 3 aic) ln

w

( Y t|3Y+ 02L Y 43C+ 02L+ 42R 244C) + 6 (~2L+~2R 2~4C)

»n ~w=
a2L+Q2R 2a4c

a2L a4C+ (a2R+ Y2 a4C 3 a2L)
as

+ ((a2R+ 3 a4C ~3 a2L)( 3 aY+a2L 3 a3C)
16m

—
3 (a2L +a 2R

—2a4C) (a Y
—a2L ) ] ln (4)

+
64 2

l(a2R+ 3~ a4c 3 a2L)(Y3 4Y+42L Y3 $3c+$2R+$2L 2$4c)

(a2L+a2R 2a4c)(T'pY T'&2L+02R+ 3 04C Y'42L)i

+ (3(a2R+ 3 a4C 3 a2L)(2~4C ~2L ~2R)
96m

+ (a 2L+a 2R 2a4c) (2&4c+ 3»R 5&2'L) i

where a (b3) is the one- (two-) loop coefficient corresponding to G224p, X; =X;(MU),

and we have ignored negligible threshold corrections at lower scales. It is clear that the one-loop superheavy-particle
contributions are

MU 1 X2L+ XPP —214c
h, i ln

Mp 6 Q2~+Q2~ —2a4c

+1 sin ~w = (3(a2R+ 3 a4c 3 a2L)(2~4C ~2L ~2R)
96m

+ (a 2L+ a 2R
—2a4c) (»4'c+ 3&2'R —5&2'L ) ~ (a 2L+ a2R —2a4c)

(5)

where we have used the subscript l indicating that the
corrections are one-loop efects. Since left-right symme-
try is preserved due to the presence of 6224p for p ~ Mp,
Q2p =a2g and X2L =kg~. These constraints, when used
in (5), yield

MU
Wi ln

Mp

~2L ~4CU U

6(a2L —a4c)
'

h, t sin Ow =0.
Q.E.D.

In proving the theorem we have not used any specific

particle content to compute a;, a, or X; . Thus the
theorem is independent of the nature and number of par-
ticles, light, heavy, or superheavy (degenerate or nonde-
generate), whether they are components of supersym-
metric GUTs or infinite towers resulting from compact-
ification of extra dimensions. Using more IGSs below
Mp, with or without decoupling P and SU(2)R break-
ings, as shown in I ig. 1, we have checked that the ana-
lytic expressions (5) and (6) are independent of these
symmetries. This is understood in view of the well-
known fact that the GUT-threshold correction to MU
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FIG. 1. Schematic representation of some models with van-

ishing GUT-threshold contribution to sin 0~, where G214

=SU(2)r &&U(1)R&&SU(4)r and other symbols are as ex-

plained in the text.

and sin Ou involves only those a; coefficients of (1) cor-
responding to the symmetry group immediately below

MU. Equations (5) and (6) have the same analytic struc-
ture irrespective of the GUT symmetry breaking down to
G224p, although the numerical values of a;, a, and k;
might difI'er depending upon the particle content. Also
in every case of Fig. 1, if a GUT of higher rank (e.g. ,

E6) breaks down to another GUT of lower rank [e.g. ,

SO(10)] containing G224p at a scale M~) M~, then
h, ]sin 0~=0. Thus the theorem is general and is valid

in a large class of models.
The twin ideas of left-right symmetry and quark-

lepton unification were combined by Pati and Salam
through the partial unification symmetry G224p. While
establishing this novel and profound property of a class
of GUTs, we find that G224p acts as a custodial symme-

try and its presence is uniquely essential at the highest
intermediate scale Mp (M~ as no other gauge group re-

placing it achieves h, ] sin 0~ =0.
The theorem has the potential to hold in other cases

where the threshold corrections might not be due to
superheavy-particle loops or perturbative origin. For
example, in the model (2) with G =SO(10) investigated

by Shafi and Wetterich, the threshold corrections at

p =MU are of the form (3) due to the five-dimension-

al operator Tr (F„,p(s4&F" ') [pis4) =Higgs field 54
cSO(10), F„,=gauge-field tensor] when (pls4))e0. In
this case X; involves an unknown parameter and the
compactification scale (Mc-). The procedure outlined in

the proof then leads to the vanishing-operator (o)
threshold effect h, sin 0~=0. If the model originates
from spontaneous compactification of extra dimensions,
then the results achieved here yield h, sin 0~=0, where
h, =h, ]+6;+6,, and 6,; is the effect of the infinite towers
when M~ is not very different from MU. We expect this
mechanism to help in building realistic unified models
envisaged in Ref. 10.

Investigations in diferent models are now in progress

in ordinary and SUSY GUTs including those inspired by
superstrings. However, some immediate consequences
in the SO(10) model without SUSY or infinite towers
are noted below. We find h. csin 0~=0 whatever the
number of IGSs below the parity-breaking scale Mp
((MU), or the size of the Higgs representations; conse-
quently, most of the intermediate scales do not change
significantly due to the GUT-threshold eff'ects. Denoting

zp (rp) as the threshold-corrected (-uncorrected) predic-
tion in the model (2) with G =SO(10), we find Mp
=4&10' GeV, MU =1.2x10' GeV, sin 0~ =0.23, and
r =rp/rp =3 —' (10— ) under the reasonably stringent
assumption that the superheavy Higgs scalars are degen-
erate (nondegenerate) differing by a factor of 10 from
Mt t where the + (—) sign applies for masses lighter
(heavier) than MU. Similarly, in the model of Ref. 11,
r= 1 (10— ) for the same degeneracy (nondegeneracy)
factor. Interestingly, in the model considered important
experimentally,

54 210 210
SO(10)~ G224p~ G224~ SU(2)L x U(1)g x U(1 )ii —L

126

&SU(3)c (=G2I I3)—G.~,

Al sin Ou =0 and other predictions (except rp) are
predominantly those of Ref. 5 when GUT-threshold
eff'ects are included although there are three or four
large representations and three IGSs. A similar
stringent assumption on the degeneracy (nondegeneracy)
factor in superheavy-scalar masses yields r =6 —'

(10 — ) and the value r =10 brings the model pre-
diction closer to the experimentally accessible range on
the proton lifetime.

As the theorem applies in the presence of the custodial
symmetry G224p with unbroken parity at the highest in-
termediate scale, it does not contradict larger threshold
corrections to sin 0~ in those models where P is broken
at the GUT scale.

Finally, we conclude that we have identified a class of
models where uncertainties in the sin 0~ prediction due
to the GUT-threshold eA'ects are drastically reduced as
the dominant one-loop contribution is zero. The theorem
is expected to provide important guidelines for future
model building.
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