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We present a microscopic calculation of the disorder-averaged persistent current for a mesoscopic ring
with a fixed number of electrons. Using an idea by Imry, we show that the even Fourier components of
the average current dominate and are related to the typical single-level current &Iip&o ec lit,'&o/Io, which
can be calculated by a Green's-function-averaging technique. For the small even harmonics p, the result
simplifies to (I2r&o = Ip/2ttM, where M is the number of transverse channels. Its relevance to multiring
experiments is discussed.

PACS numbers: 72. 10.Bg, 05.30.Ch, 73.50.Bk, 73.60.Aq

Quantum persistent currents' in small nonsupercon-
ducting rings threaded by a magnetic flux p have
aroused excitement and controversy during the past
year. In particular, the disorder average of the cur-
rent and its harmonic content, (I)D =g~ (I~)D sin(2tzp~p),
are intriguing theorists. One reason is the averaging
controversy concerning the diAerences between averag-
ing at a constant number of electrons N versus constant
chemical potential p. The other reason is that the first
persistent-current experiment was performed on an en-
semble of 10 disconnected rings, so that a comparison
with theory requires one to compute the ensemble-
averaged current per ring, which is diAerent in magni-
tude and periodicity as function of flux from that of the
typical current in a single-ring experiment. The aver-
age current contains single-electron and collective contri-
butions, the latter due to the electron-electron interac-
tion. Their relative size depends on the number of
eA'ective channels M,g. Although the form of the
single-electron contribution had been conjectured from
computer simulations and by a correspondence argu-
ment, it resisted analytical calculation because of the
averaging problems involved. Here we present a
Green's-function approach to this quantity and deter-
mine its form and amplitude in the diAusive regime. The
results diAer from the numerical ones. Our main for-
mulas are given in Eqs. (3), (4), and (8).

Three observations led gradually to a deeper under-
standing of the problem and the present calculation.

(i) Calculations for one-channel loops' and numerical
studies for multichannel rings indicated that while com-
puting lluctuations (I )ti is insensitive to averaging at
constant N versus constant p, the average currents are
different, (I(N))De(I(It))D. Specifically, the numerical
studies employing averaging over N indicated period
halving also for ensembles of multichannel rings, i.e.,
(I~=~(N))tv D =0 while (1~=2(N))tv D & 0. This can be
understood from the structure of the energy spectrum of
rings.

(ii) Bouchiat and Montambaux found that in the
ballistic regime (I„=2)tv D

= In is independent of the
number of channels. Based on extensive numerical cal-

culations and a correspondence argument (relating the
ballistic and diffusive regimes) it was conjectured that in

the diff'usive regime the amplitude is related to the typi-
cal single-level current and (Ip =2)tv, D

=C(l, i/ML ) ' Io,
which showed that both averages, (I )D and (I)o, may
not depend sensitively on filling.

(iii) Imry observed that expanding the thermodynam-
ic potential 0 in terms of SIt =p(&p) —eF by imposing
the constant-N condition allows one to isolate a term
AQ = i p(EF)(6p) that can account for period halving.

A corresponding formula is derived below without ex-
pansion.

The system is a thin-walled normal-metal ring (e.g. ,

Cu or Au) threaded by a magnetic llux p=p/po, with

=iohc/e. The 11ux is treated as an external parameter.
The quantum persistent current is an equilibrium proper-
ty and defined in terms of the thermodynamic potential
0 of the system, ''

e BAI= ——
h tlap

A useful unit for the current is Io=evF/L. We denote
the number of electrons in the ring by N; for constant N
the chemical potential is Aux dependent, It =It(&p). Be-
fore averaging, the current I of a single ring is strongly
sample specific, changing sign as a function of filling,
with an average period M,p, and randomly with disor-
der configurations.

We use the following notation. At zero temperature,
the characteristic length scales are the ring circumfer-
ence L, elastic mean free path l,1, and localization length
(ecMl, ~. In the diffusive regime one has l, ~

(L ( g.
We assume that the electronic phase coherence length
exceeds L. A ring with a cross-sectional area A has
M =AkF/4tt transverse channels. There are two relevant

energy scales, the level spacing or inverse density of
states dM =1/p(eF), and the correlation or Thouless en-

ergy E, =tz 6D/L ce A. /zD, where zo =L /D is the time
for diffusion around the ring (D=vFl, ~/d). The latter
can be expressed as E, tx'h, MM, g in terms of the eff'ective

number of channels M,tt=MI, )/L.
We now present the details of our calculation. It
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proceeds in two steps, the first leading to Eq. (4) and the
second being the microscopic calculation of (i~)D result-
ing in Eqs. (6) and (7). The electron-electron interac-
tion is not included.

At zero temperature and constant filling N the per-
sistent current is given by I(N) = —(e/h)(8E/Bp)&, in
terms of the total energy of the system E =fg dco cop(co),
with the side condition N=fzdcop(co) =const. Since
the chemical potential p and the density of states p(co)
are periodic functions of the flux p through the ring,

&I(N))D = — (p(p))D (p —p) '
2h t1p D

x 1+0 Ec

p
(3)

([tip'"i/Qp](p —p)"+ )D, where n) 1, which have the
harmonic amplitudes (p~) i(p)p~ i)DE, . Applying the
above condition then implies that their size relative to
the first term is of order (p~=o(p))DE, /(p~=o(p))D ~ E,/
p. Hence, the disorder-averaged current is

p= g ppcos(2zpp),
p=O

p(ro) = g pp(co)cos(2zcpv ) .
p=O

While p~=o(co) is a slowly varying function of co, the
higher harmonics change sign with an average period E, .
The variation of p(p) with disorder is also of magnitude
Ec.

We introduce a parameter p to isolate the large flux-
independent contribution to the chemical potential p.
Later we choose p=(p~=o)D. Differentiating E,

BE/'dv =pp(p)dp/'dv+J, droco[r)p(ro)/r)v ],
and using the side condition dN/dp=0, we obtain the
following exact expression for the current:

—p(p) (p —p) + de(co —p) p(co)
e 1 6 2

"" — 6
h 2 Bv Bv

The derivation is easily generalized to finite temperature
and leads then to (3) with a p(p, T). One can express
the leading contribution to the average current also as

(I(N ) ) = (p(p )) ((86F/8N ) (6I/BN ) )

in terms of the changes of the free energy and the total
current with N at constant fiux (6F =F—(F)D).

Next, we use Eq. (3) to calculate the single-electron
contribution to the average current (I(N))D. We replace
the chemical potential and its flux derivative by a
single-level energy E„and current i„=—(e/h)r1E„/r1+,
say, of a level within E, of the Fermi surface. This is a
reasonable assumption because of level repulsion and the
strong (anti)correlations in the spectrum of closed rings.
Relating the Fourier amplitudes of the level energies to
those of the level current, i =+~=|i~sin(2zcpp), and as-
suming the absence of correlations between diA'erent har-
monics (which is confirmed by the microscopic calcula-
tion), one concludes

+ den(co —p) p(co)
~i O Q(p

(2) (I„&,= (M/xpIo) &l' )p (4)

where p =p(p) and p is constant. Note that BI/Bp =0
is equivalent to dN/d+=0. We perform the disorder
average on Eq. (2). The last term is (I(p))D, which has
been shown to be exponentially small. The second term
contains nonzero correlations but contributes only to
higher order, E,/p. The average of the first term can be
factorized up to corrections of the same order. The
proof uses the periodicity of p~) 1(co) and factorization
of disorder averages. It is subtle since there are many
terms of comparable order. First, differentiate dN/dp
=0 with respect to p, which yields the condition

&pp) 1(p)p, ) i&D ~ &pp —O(p)&g)&p,') 1&D .

for the even harmonics. ' The odd harmonics have ex-
ponentially small amplitudes. This remarkable relation-
ship was first conjectured for p=l in Montambaux et
al. from numerical work (however, see discussion of nu-
merical results below) and derived in Ref. 3 for the
strongly localized regime.

The square of the single-level current is insensitive to
averaging at constant N or p, and we use the Green's-
function approach for its calculation. Starting from the
standard formula

"dEI=ID g [G+(k E) —G (k,E)],
2zi k kg

Then, note that the second term in (2) contributes terms we obtain, after squaring and disorder averaging, to
leading order

dE ~~ dE' k k'
(i ) =I 2Re I g (G+(k, E)) (G (k', E'))

~M 2z' ~ ~ ~M 2'

x D(k —k', E E')+g(G+(k —p, E))D—(G (k'+ p, E'))DD (k —k' —
p, E E')—

P

+K(k+k', E —E')+g(G (k —p, E))D(G (k' —p, E')) DK(k+k' —p, E —E')
P
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Here D and K denote the diff'usion and Cooperon contri-
butions. Equation (5) with the limits of integration ex-
tending from —~ to p can be used to calculate the typi-
cal total current (I )Jj. The second-order terms in D
and K were not considered in Ref. 2. '

To obtain the typical single-level current, we integrate
over an energy interval that contains on average one en-

ergy level near the Fermi surface. While this procedure
would be unjustified for a particular impurity
configuration, it is valid after impurity averaging due to
the equivalence of averaging across the across the spec-

trum and over all impurity configurations. The summa-
tion over the flux-dependent longitudinal components of
the momentum vectors is best performed by using the
Poisson summation formula. After shifting the momen-
tum variables in the second-order term, the sum over p
involves only Green's functions and its flux-independent
part gives the dominant contribution. For rings of cir-
cumference much larger than the transverse dimensions
(L))L&) only the k& =k& terms contribute to leading
order. Performing these summations and energy in-
tegrals yields

(i ')D =I(~)
' g, sin'(2trpv ) 3 —u

4 l,
zd L J, ——i p3 BQ

with u =
& p(hard/M, tr)

' . The Fourier coefficients (i~)ti
in Eq. (6) exhibit different p dependence for p~~M,'g.
When p«M, 'g, one may expand in u and find, to fifth
order in u,

jl —e "[(1+u)cosu+ u sinu] j,

microscopic justification for this. However, the analyti-
cal result (I2)D/Io= 1/2aM is not inconsistent with the
numerical amplitudes in Fig. 3(c) of Ref. 6 for the larg-
est M, i.e., M=64, 100. Recent simulations involving
rings with larger transverse size L& are better fitted by
(8) 15

The leading term in Eq. (8), (Iqt, )D = Ip/2trM, was in-

dependently obtained by Schmid' and Altshuler, Gefen,
and Imry' from a formula that relates the ensemble-
averaged current to the grand-canonical fluctuation of
the number of particles with flux,

' I/2
Io

12P
2 2 Ted

15 M,g
P(ip')o = + (7)

Here the leading term is independent of disorder. Per-
forming the sum over p in Eq. (6) yields for the typical
single-level current (i )Dt =Io(l,~//2dML ) 't indepen-
dent of flux, when

~ p ~

)' M,~'

By combining these results with Eq. (4), we obtain for
the even Fourier coefficients (with p «M,'g) of the dis-
order-averaged current in the diftusive regime

r & 1/2
2p zd
15m M,g

(I(N))~ = —(e/2h)(p(p))D '6((AN) )D/6p.

From this they may also determine the temperature
corrections, which are similar to those for the collective
contribution to the persistent current. However, their
calculation can only produce the first term in (8), which
explains, e.g. , the pathological flux dependence (I)D
~ Io cot (trp) . ' This difficulty is presumably related to
the expansion of the N =const condition to first order in

&p (w), (p(p) )Dip (w) = —fgd 6cp0(p, co), ' which is
problematic since the discreteness of the energy spec-
trum leads to different flux dependences on the left- and
right-hand sides of this equation. By avoiding such an
expansion our approach yields the full harmonic content
of the average current.

Equation (8) with d=3 applies to multiring experi-
ments. The additional ensemble average over N is trivi-
al since the result for the average current (in units of Io)
does not depend on filling. Our formula implies that at
zero temperature the ratio of the single-electron and col-
lective ' (due to the electron-electron interaction) con-
tributions to the persistent current is (I~'=2)~/(I~'=q)D
=(3/4X)M, tr' =7M, tr' for Cu or Au rings (1=0.1)
which indicates that the collective contribution dom-
inates in systems with large M,p. ' This estimate uses
the effective coupling constant X=X/[1+ —,

' ) ln(p/&, )l
=X/5, due to higher-order diagrams, ' rather than X as
in Ref. 5. Taking parameters appropriate for the experi-
ment by Levy et al. (L=2.2 pm, M=17000, and
l, ~

=0.02 pm), one predicts for the collective contribu-

Io 1

M 2' (8)

Note that the sample-specific dependence of the current
on filling N has dropped out by averaging.

The amplitude in (8) can be expressed in terms of the
diffusion time rD around the ring, Ip/M=d(e/ro)M, ff,
which shows that the harmonics of the disorder-averaged
current are smaller by a factor of 1/M, s. than the typical
current (I~=~)D for the same ring. For the ratio of the
harmonics of the typical single-level and total currents
we obtain (i~)D /(It, =~)D = —,

' (p/3)' (trd/M, tr), while

the ratio of the typical currents at constant flux is

(i )o /(I )D ~(zd/M, tr)' . The result that (i )D is
constant as a function of flux, when ~p~ ~M, s.'t, agrees
with numerical findings ' and can be explained in terms
of the structure of the energy spectrum.

The discrepancy between (8) and the formula (I2)D
=C(Io/M)M, 'g (with C= 0.05) inferred from comput-
er simulations comes as a surprise and a puzzle. The u

term in Eq. (7) or (8) has precisely that functional
dependence but its coefTicient vanishes. It is not clear
whether finite-size eff'ects lead to a nonzero coefIicient.
One would obtain a nonvanishing coe%cient if one
modified the diffusion constant D =UFl, ~/d, e.g. , by intro-
ducing an effective dimensionality' d*&d in D but not
elsewhere in the calculations, but we have not found a
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tion (I~'=2)D = (4l,~/zdI. )XIo = 0.05 nA and for the
single-particle contribution (I~'=2)D =Ioj2+M = 1 pA, in

contrast to the experimental result of = —0.4 nA. It
has been mentioned that spin-orbit scattering may
change the sign of the single-electron contribution. The
present calculation shows that this is not the case, cf. Eq.
(4), only the amplitude is reduced.

In summary, we have presented a microscopic calcula-
tion of the ensemble-averaged persistent current in mul-
tichannel rings in the diA'usive regime. The difhculties of
performing disorder averages at a constant number of
electrons N have been circumvented by first relating the
average total current to the Auctuations in the single-
level current and then calculating the latter quantity us-

ing Green's functions in the standard way.
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