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Fractional Quantum Hall EH'ect and Multiple Aharonov-Bohm Periods

D. J. Thouless
Department of Physics FM I5, -University of Washington, Seattle, Washington 98I95

Y. Gefen
Department of Physics, Weizmann Institute of Science, Rehovoth, 76l00 Israel

(Received 19 November 1990)

An arrangement for obtaining Aharonov-Bohm oscillations of basic periodicity qh/e (q ) 1) is dis-
cussed. The relaxation towards h/e periodicity is characterized by a decay time exponential in the sys-
tem size at zero temperature, and linear in the size at finite temperature.

PACS numbers: 73.20.Dx, 72.20.My, 73.20.Mf

Laughlin's explanation of the fractional quantum Hall
efi'ect' (FQHE) combines two rather diA'erent features.
First, he proposed an approximate ground state which

gave a downward-pointing cusp of the energy when the
lowest Landau level was filled to a proportion of exactly
1/q of its maximum capacity. Second, the cxcitations
from this ground state, separated from the ground state
by an energy gap, carry charge +'e* =e/q. Although
explanations of the FQHE have been given in terms of
this fractional electron charge e, this does not seem to
be necessary for the explanation of the eff'ect, which is a
consequence of the cusp in the ground-state energy at
the appropriate filling factor, and would be observed
even if the fractional charges were confined by the forces
between them. One likely consequence of fractionally
charged particles is that the Aharonov-Bohm (AB)
period, as detected, for example, by resistance oscilla-
tions in a ring with a varying flux through it, should be
modified, and have the value h/e* rather than h/e. Ob-
servation of this has been reported by Simmons et al.
Lee has suggested that there is some doubt about
whether the data really show this effect, and has pro-
posed that a Coulomb blockade is responsible for the ob-
servation.

In this paper we discuss a possible arrangement for ob-
taining these multiple AB periods and analyze the condi-
tions necessary to observe them. We find that the period
qh/e is closely related to the q-fold broken symmetry as-
sociated with the FQHE which one of us discussed in a
recent paper, but that there is a relaxation towards the
period h/e which is due to the motion of fractionally
charged quasiparticles. Thus, it is not the observation of
a higher AB period but its quenching that demonstrates
the existence of free fractionally charged quasiparticles;
a similar observation is made in the paper by Lee. At
very low temperatures we relate the decay time of the
higher period to a quasiparticle tunneling time, while at
higher temperatures it can be estimated in terms of the
longitudinal conductivity of the system.

We also show that the decay times involved in this
process represent maximum times for which the FQHE

itself is stable. A very slow rate of change of flux corre-
sponds to a very low Hall voltage. We find that in the
zero-temperature limit the FQHE relaxes towards the
integer quantum Hall eAect, but this decay time in-
creases exponentially with the size of the system. How-
ever, at nonzero temperatures the decay time is exponen-
tial in temperature but increases linearly with the size of
the system. We have not shown this for the standard
geometry of a quantum Hall measurement, but only for
our special geometry. Nevertheless, it fits in neatly with
the idea that the transition to a fractional quantum Hall
state is a zero-temperature phase transition to a phase
with broken symmetry.

Aharanov -Bohm oscillations at zero temperature.—The argument we use in this paper is closely related to
the argument developed in Ref. 5. The electrons in the
present geometry are confined to an annulus in a uniform
perpendicular magnetic field B. The annulus has inner
radius R ~ and outer radius R2. A solenoid passes
through the center of the annulus and carries magnetic
llux @=ph/e, which can be continuously varied. The
two edges of the system are each connected through a
tunneling barrier to a reservoir (large capacitor) that
maintains a constant and equal electrochemical potential

p at the edges. This tunneling barrier must be large
enough that the system is not strongly perturbed by the
reservoirs, but small enough that the barrier penetration
time is small compared with the times for other relaxa-
tion processes that we are interested in. There is an
ammeter that monitors the current flowing from one
edge to the other through the reservoirs. To monitor the
AB period of the resistance fluctuations we suppose that
there are two additional leads attached to one of the
edges, so that the edge resistance can be measured. The
reservoirs, ammeter, and leads are all supposed to con-
tain ordinary electrons, but the annulus, which has some
substrate disorder, is supposed to be in a fractional quan-
tum Hall state. For definiteness we suppose that the
lowest Landau level is close to —,

' filling, so that the 3

FQHE is obtained; in this case q =3.
The Laughlin wave function for an ideal annulus has
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the form

+ = II ~; ~
',"exp z z

4lp

where z~ =x~+iy~, lp is the magnetic length, and the
wave function is confined to the region Rl & ~z~ & R2 if
the parameters n and N are given by

n = R 1 /2l o
—

P, n +q% = R z /2l rj
—

P . (2)

Because of the disorder this wave function will be per-
turbed, so that, for example, total angular momentum is
no longer a good quantum number, and if the filling fac-
tor is not exactly 3 there will be some localized quasi-
particle excitations added to this state. When the flux,
proportional to p, is increased, the wave function changes
adiabatically, and, because of the factors ~z; ~

~, the distri-
bution of electrons moves outwards. The energy changes
because the electrons are moving relative to the positive
background and relative to the confining potential at the
edges of the annulus. Eventually, at some value of p, it
will be energetically favorable for an electron at the
outer edge to tunnel into the reservoir, leaving the an-
nulus in a Laughlin state with one less electron, and for a
diA'erent value of p an electron can tunnel from the other
reservoir to the inner edge. Finally, when tt has in-
creased by q, the system is restored to its initial state,
apart from a phase factor resulting from the increase of
p and the decrease of n by q. This is the basis of the
period qh/e in the lIux for this system.

In the absence of substrate disorder there is a smooth
periodic dependence of the energy on the flux p. We can
assume without loss of generality that there is a
minimum of the energy at &=0. The displacement of
the electron charge density given approximately by the
wave function of Eq. (I ) gives rise to a force due to the
confining potential, which is electrostatic in origin. To a
reasonable approximation the energy change can be tak-
en to be the sum of the changes in energy due to the dis-
placements of the centers of the single-particle wave
functions from which + is composed, weighted with the
occupancy v= I/q of these wave functions. If the energy
of such a single-particle state as a function of the center
coordinate r is U(r), then the sum over all states with
centers between Rl and R2 gives

this smooth variation of the energy there are fluctuations
due to the disorder, similar to the fluctuations of resis-
tance. These and all the related fluctuations in the
mesoscopic persistent current and the magnetic suscepti-
bility are periodic functions of the Aux p with period q.

When the energy of this state is sufficiently high it will
be energetically favorable for an electron to pass between
the annulus and one of the reservoirs, and the system of
N ~ 1 electrons has an energy which is also parabolic,
with its minimum as a function of p close to q/2 (cf. Fig.
I) 6

It is clear, as discussed in Ref. 5, that there are q
—1

other equivalent sets of states which might have been in-
volved, which can be obtained from Eq. (I) simply by
changing n by an integer. For any given value of P these
typically differ in energy from one another by a term of
order Uolo/R. We assume, as Tao and Haldane did,
that these states are nonoverlapping. This appears to
contradict the von Neuman-Wigner theorem' that the
levels of a closed system should not cross when a single
parameter is varied, but the gap which opens up will be
exceedingly narrow because the overlap is so small. One
can describe the process which leads from one of these
sets of levels to another in terms of the spontaneous
creation of a pair of quasiparticles with charges e/q,
followed by the tunneling of the members of the pair to
the two different edges. If this process occurs at half-
integer values of p it leads to the gap which prevents the
crossing of the levels, but it can also occur at other
values of the flux with the emission of phonons or other
forms of energy to carry the system from a higher to a
lower branch of the curves shown in Fig. 1. The quasi-
particles are exponentially localized in the presence of

I

LLI

ti'~, U'(R2)= Vlp
Rp

U'(Ri)
Ri

where the relation between p and the center coordinate
implied by Eq. (2) has been used. Higher derivatives of
the potential give contributions which are down by fur-
ther factors of lo/R. The energy scale of these parabolic
variations in energy is lo/R times some macroscopic en-
ergy scale Up of the order of the distance of the Fermi
energy from the Landau level; this will be reduced if the
confining potential is soft rather than hard. On top of

FIG. t. Dependence of E pN (in arbitrary units) f—or the
annulus at zero temperature on the flux p which threads the
annulus, in the case of the —,

' FQHE. Here E and N are the
energy and number of the electrons, and p is the chemical po-
tential. The higher set of parabolas represents a change in W
of + 1 over the lower set. The system normally follows the
path shown by the thickened curve, but very slow adiabatic
changes allow the system to follow the lower path shown by the
arrows.
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disorder, with a localization length which, at fixed ener-

gy, increases as the disorder increases. '" To obtain a
quantitative estimate of the crossover from multiple to
single AB periods, we have considered a toy model for
which the dynamics is governed by a single relaxation
time i for transitions between one of the three states
which is instantaneously higher in energy to one of the
lower-energy states. Analysis of this model shows that
there is a steady-state solution in which all three levels
are equally occupied on the average, so that the AB
period is h/e, but there are long-term transients with
periodic qh/e which decay to the equilibrium state in a
time of order ~. The time for tunneling increases ex-
ponentially with the ratio of the width of the system to
the localization length, and at very low temperatures the
AB period is qh/e except for very long time scales or
very small systems.

Aharonov-Bohm oscil jations at nonzero tempera-
t.ures. —At nonzero temperatures the situation is very
different. At low temperatures pairs of oppositely
charged quasiparticles can be created by thermal fluc-
tuations, and these pairs should not be confined, since
there is a three-dimensional Coulomb interaction (I/r
potential) between the quasiparticles. They therefore
form a dilute plasma which can drift in response to any
applied field, and, in particular, they can respond to the
energy differences between the q different ground states.
A total charge transfer of e/q across the system leads
from one of these states to another. There is a driving
voltage of order qUplp/Re when the system is in one of
the higher states which drives it towards the lower state,
and the conductance across the annulus is Rcr„/(R2
—Ri), so the time for the system to relax to its lowest-

energy state is of order

R2 —R(
4

lo q2~. Uo

If the longitudinal conductivity a, is activated, this time
will increase exponentially as the temperature goes to
zero. At any nonzero temperature there is a finite relax-
ation time that increases linearly with the width of the
system.

The dynamics of the system can be analyzed similarly
to the T=O scenario alluded to above. Within the same
single-relaxation-time picture we find an eigenvalue 1 of
the density matrix. It corresponds to a stationary state
where all the q states (time averaged) are equally likely.
Selecting an initial condition for which one of these
states is preferred, one should expect to see AB periods
qh/e for time scales short compared with r, but these
would be damped, and the true period h/e should be ob-
served over longer time scales.

To monitor the periodic variation of the state of the
system with flux, leads attached to the edge states can be
used. It is not possible to use a current between the two
edges, as that will be carried by the fractionally charged

quasiparticles moving across the ring, and these will
themselves produce a major disturbance of the effect we
would like to measure. The damping of the qh/e oscilla-
tions should provide a method of studying the tempera-
ture dependence of the longitudinal resistance under con-
ditions in which it is too low to measure directly.

Quantum Hall effect at low voltages. —As was dis-
cussed in Refs. 5 and 16, at very low temperatures truly
adiabatic motion of the system would involve motion
along the lowest branch of each parabola with no Hall
current. At each "crossing" of the parabolas a quasipar-
ticle of charge e/q would tunnel within the system from
one edge to the other, thus canceling the average current
induced by the slowly changing flux. This rate has to be
compared with the temporal frequency of the AB oscilla-
tions, and, because the tunneling rate depends exponen-
tially on the size, it is only for very small systems or ridi-
culously low Hall voltages that this adiabatic process
would occur; otherwise the system follows the path which
leads to the FQHE. For difl'erent filling factors, such as

3, it may be that the total charge transfer upon varia-
tion of the flux by h/e would be e. Consequently, there
should be no similar quenching of the integer quantum
Hall effect.

At nonzero temperatures the situation is less clear, but
the conditions for observing a crossover between the two
regimes are much less stringent. If the temporal period
of the Aharonov-Bohm oscillations, which in the case of
1/q filling is the electron charge divided by the Hall
current, is much less than the r given by Eq. (4), the
usual FQHE plateau should be observed. If this period
is greater than the relaxation time i the energy
differences between the different parabolas shown in Fig.
1 should produce a varying bias between the edges, and
these will induce a radial current between the edges
which should make a substantial change in the plateau.
Our guess is that it will lead to a more or less smooth
variation of the Hall current with magnetic field instead
of the plateau which is observed at larger values of the
Hall voltage.

The relaxation time that comes into this discussion,
Eq. (4), gives some basic time, of the order of I psec,
multiplied both by the width of the annulus in magnetic
lengths and by the exponential factor in the reciprocal of
the longitudinal conductance. The range of times avail-
able may be quite convenient for measurement of the
damping of the multiple Aharonov-Bohm periods, but
observation of any loss of the FQHE plateaus must in-

volve a combination of small samples, low current, and
relatively high temperature.
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