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Non-Abelian Statistics in the Fractional Quantum Hall States
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The fractional quantum Hall states with non-Abelian statistics are studied. Those states are shown to
be characterized by non-Abelian topological orders and are identified with some of the 3ain states. The
gapless edge states are found to be described by non-Abelian Kac-Moody algebras. It is argued that the
topological orders and the associated properties are robust against any kind of small perturbations.
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It has become clearer and clearer that the ground
states of strongly interacting electron systems may con-
tain very rich structures' which cannot be character-
ized by broken symmetries and are called the topological
orders. Physical characterizations of the topological or-
ders are discussed in Refs. 2 and 6. It has been shown
that the fractional quantum Hall (FQH) states, the
chiral spin states, and the anyon superAuid states contain
nontrivial topological orders characterized by the Abeli-
an Chem-Simons (CS) theories. ' ' It would be in-

teresting to know whether or not the non-Abelian topo-
logical orders characterized by the non-Abelian CS
theories can be realized in strongly interacting electron
systems. In this paper we will construct some FQH
states which contain non-Abelian topological orders.
The effective theory of these states is shown to be non-
Abelian CS theory and the quasiparticles carry non-
Abelian statistics. We will also discuss how to under-
stand the non-Abelian statistics in terms of the electron
wave function.

Different electron wave functions with filling fraction
1/2n have been constructed in Ref. 4. The quasiparticles
in these states were shown to have non-Abelian statistics,
provided that these states are incompressible and the
quasiparticles have finite size for a local Hamiltonian.

The spirit of our discussion is very similar to that in
the mean-field approach to the spin-liquid states. ' A
similar construction is also used to study the SU(N) spin
chains. ' ' Consider a two-dimensional spinless (i.e.,
spin-polarized) electron system in strong magnetic field
with filling fraction v=M/N. For convenience we will

put the electron system on a lattice; thus the electron
Hamiltonian has the form

H=g lt(j.e" "c; cj +V tjntlnj
IJ

where 8;~ is the electromagnetic gauge potential on the
lattice and n; =c; c;. To construct a FQH state with a
non-Abelian topological order, we would like to break
each electron into N partons' y, each carrying electric
charge e/N:

1
C=P]l/f2 ' ' l/fÃ=

t
~ Cab. . . rlPatPb ' '

)PcNt ab

where ttf, are fermionic fields and N is odd. After substi-
tuting (2) into (1) and making a mean-field approxima-
tion we reach the following mean-field Hamiltonian:

ieA;J/W
~mean ~ tij ~ Uij, ab piapjb ~

If

where

U j — ' ~'Jt+ I (I/N t) &

x (cab ~ (ilrb tlr. )i ea'b' . . ~ ('tjrb ''' ' 'y. ')j) .

(3)

The mean-field solution U;j can be obtained by minimiz-
ing the average of the Hamiltonian (1) on the ground
state of H „„in (3) (i.e. , E. =(@m,»~H~@m, »)). Let us
assume that there exists a Hamiltonian H such that the
mean-field solution takes the most symmetric form
Uj b p6 b In this case the mean-field Hamiltonian
(3) describes N kinds of free partons in magnetic field,
each with a filling fraction v=M. Thus the mean-field
ground-state wave function is given by @ „„fz,']
=+,=~@M(z,'), where z,' is the coordinate of the ath
kind of parton and gM(z;) is the fermion wave function
of M filled Landau levels.

Notice that the mean-field theory (3) contains many
unphysical degrees of freedom arising from the breaking
of the electrons into partons. In order to use the mean-
field theory to describe the original electron system we
need to project onto the physical Hilbert space which
satisfies the constraint

p)i pli = ' ' = pNi Qadi . (5)

In the physical Hilbert space, different kinds of partons
always move together. The bound states of the partons
correspond to the original electrons. The electron
ground-state wave function can be obtained by doing the
projection on the mean-field wave function @ „„by set-
ting z; =z; = - . . =z;, where z; is the electron coordi-t 2

nate. The electron wave function obtained this way is
just one of the FQH wave functions proposed by Jain. '

In the following we will call such a state the NAF (non-
Abelian FQH) state.

The wave function of the NAF state, [gM (z;)], is the
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Jp(i) =0, I=1, . . . , N —I,

where J„are the SU(N) charge and the current density.
The constraint (6) can be enforced in the mean-field
theory by integrating out the gauge-field fluctuation a„. '

After the projection, the only surviving states are those
which are invariant under the local SU(N) transforma-
tions. Those states correspond to the physical electron
states.

The effective theory of the NAF state described above
can be obtained by first integrating out the y field:

Xp, p. = ApB,Age"' + Tra„f,ge"' (7)

exact ground state of the following local Hamiltonian. '

The kinetic energy in the Hamiltonian is such that the
first NM —N+1 Landau levels have zero energy and
other Landau levels have finite positive energies. One
such kinetic energy is given by +1=p [K —(I ——,

' )cp, ],
where K = —(I/2m)(6; —ieA; ) . The two-body poten-
tial in the Hamiltonian has the form V(r) ~8 '6(r).
One can easily see that the Hamiltonian is positive
definite, and the NAF state has zero energy because the
electrons in the ground state all lie in the first
NM —N+1 Landau levels and the ground-state wave
function has Nth-order zeros as z; z~. However, it is

not clear whether the state has the highest filling frac-
tion among the zero-energy states (this is related to the
incompressibility). We can only show that among the
Jain states' the NAF state is the zero-energy state with
highest filling fraction. We do not know whether it is
sufhcient to consider only the Jain states. It would be in-
teresting to numerically test the incompressibility of the
NAF state for the above Hamiltonian. Numerical calcu-
lations have been done only for the projection onto the
first two Landau levels. ' In this case one indeed finds
the Jain & state to be the exact incompressible ground
state.

The projection, or the constraint (5), can be realized

by including a gauge field. Notice that under local
SU(N) transformations y„W;,b y~;, W; C SU (N ),
the electron operator c; in (2) is invariant. Thus the
Hamiltonian contains a local SU(N) symmetry after we
substitute (2) into (I ). The local SU(N) symmetry
manifests itself as a gauge symmetry in the mean-field
Hamiltonian (3). Notice that (3) is invariant under the
SU(N) gauge transformation W;: y; W;y; and U~

W;U;~8'~. . The gauge fluctuation in the mean-field
theory can be included by replacing the mean-field value

U~ =q by U~. =qexp(ia;J), where a;~ is a N XN Hermi-
tian matrix. a;~ is just the SU(N) gauge potential on the
lattice. The time component of the SU(N) gauge field
can be included by adding a term' y; ap(i)y; to the
mean-field Hamiltonian. The constraint (5) is equiv-
alent to the following constraint: '

which is just the level-M SU(N) CS theory. f„, in (7)
is the strength of the SU(N) gauge field. The quasipar-
ticle excitations in the NAF state correspond to the holes
in various Landau levels of the partons. Those excita-
tions are created by the parton fields y, . After including
the gauge fields, the properties of the quasiparticles are
described by the following eftective Lagrangian:

X~,fr =g y iB, +—Ap+ap

1 . e|i;—i A;——ia;
2m N

2

Equations (7) and (8) describe the low-energy properties
of the NAF state.

The non-Abelian CS theory given by (7) and (8) has
been studied in detail in Ref. 8. The quasiparticles y,
(which are called the Wilson lines in Ref. 8) are found to
have non-Abelian statistics. In the following we will

summarize some special properties associated with the
non-Abelian statistics and discuss their relation to the
microscopic electron wave function. Let us put the NAF
state on a sphere. The ground state of (7) is found to be
nondegenerate on the sphere. (On genus-g Riemann sur-
faces the ground states are degenerate. ) Now let us

create m quasiparticles and m' quasiholes using the
operators y, . and y, If we have ignored the gauge field
a„(setting a„=0), the Hilbert space generated by
y, , ~,

"='~ and y,, ~, =~ would be (Pg) x(//~) which
has N +"' dimensions. Here //R is the fundamental
representation of SU(N) and P~ is the dual of //R.
However, after we include the gauge fluctuations and do
the projection z,'=z;, only the gauge-invariant states can
survive the projection and appear as the physical states
of the original electron system. In particular, all the
states that transform nontrivially under global SU(N)
are projected away. Thus the Hilbert space P of the
physical states is contained in the SU(N)-invariant sub-
space of (Pg) x (P~): Inv[(//~) x (5'R) ]. In
the above we have only used the global SU(N) gauge
symmetry. The local gauge symmetry may further
reduce the dimension of the Hilbert space. Not every
(global) SU(N) singlet state can survive the projection
and become a physical state. Thus the dimension of
//„, can be less than that of Inv[BVR) x(//p) ].

When m =1 and m' =0, there is no invariant state and
the dimension of )Y]0 is zero. When m =m'=1 there is

only one invariant state. It is shown that such a state is
always physical and & [[ is one dimensional. In this case
moving one particle around the other induces a Berry
phase exp[i2x(N+ I )/N(N+M)]. When m =m'=2,
Inv[(//R) &&(&p) ] is two dimensional. It turns out
that &22 is two dimensional if M & 1 and one dimension-
al if M= 1. As we interchange the two particles creat-
ed by y, , , i =1,2, we obtain a non-Abelian Berry phase
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for M & 1. The 2x2 matrix describing the non-Abelian
Berry phase is found to have eigenvalues —exp [itr
x ( —N+ 1)/N(N+M)] and exp[i@(N+1)/N(N
+M)l. For M=1 the Hilbert space '&22 is one dimen-
sional and the corresponding Berry phase is exp(itr/N).
The later result is expected because the M=1 NAF
state is just the Laughlin state with filling fraction 1/N.
The reproduction of the well-known results of the
Laughlin states is a nontrivial self-consistency check of
our theory.

Some of the above results can be easily understood in

terms of the microscopic electron wave function. First
we notice that the mean-field state @ „„is a (global)
SU(N) singlet and the NAF wave function can be ex-
pressed as (Ol+;c(z;)I@ „„)=[AM(z;)], where c(z;)
is given by (2). The quasiparticles discussed above
are described by the following electron wave function:
«III;c(z )Ht, t'y. ,yb, .le.,„„). Since (Ol?I;c(z;) is an
SU (N) singlet, it is clear that only the states in

Inv [(PR ) x (P tt ) ' ] can survive the projection and
give rise to nonzero electron wave functions. The dimen-
sion of the physical Hilbert space may be smaller than
that of the invariant space because the electron wave
functions induced from different mean-field singlet states
may not be orthogonal to each other. For m =m' =1 the
electron wave function can be obtained by the projection
of the mean-field state yl(z~)yl (Z2) I& „.„). The elec-
tron wave function is non zero and is given by
gM (z;;Z|,Z2) [gM (z; ) ] ', where gM (z;;Z|,Z2) has one
hole and one particle at Z] and Z2. Thus &]] is one di-
mensional. For m =m'=2 the two electron wave func-
tions @] 2 can be obtained by the projection of mean-field
states yl (1)yl (2) y~ (3)yl (4) l@~e,. „) and yl (1)yq(2)
x yl (3)y2(4)l@~,„. „) (which contain two singlets). No-
tice that locally the electron wave functions are the same
near each quasiparticle no matter whether the quasipar-
ticle is created by y~ or y~. More precisely the physical
correlation functions, like the density correlation, are the
same around each quasiparticle when the quasiparticles
are well separated. This is because y] can be rotated
into y2 by a global SU(N) transformation, while the
density correlation, being a SU(N)-invariant quantity,
will not be changed. The effects of the other quasiparti-
cles can be ignored since the correlation in the NAF
states is short ranged and the other particles are far
away. Thus the two electron states +~ and N2 should
have the same local correlations and hence the same en-
ergy. Such a degeneracy is a bulk property just like the
degeneracy of the FQH states on a torus.

When M=1 each kind of parton fills only the first
Landau level. The action of y~(1)yl(2)yl (3)y~ (4) on
the first-Landau-level wave function corresponds to mul-
tiplication by a factor

(z; —Z1)(z, —Z2)=ps(z, —...)~(z, —...) g (z; —z;, ) (z1 —z;, )

and the action of y~(1) yl (3) corresponds to a factor

X =g i) ""(tlo—v8, )k", (9)

where k" is a fermion field describing the edge excita-
tions of the eth Landau level of the ath kind of parton.
The Hilbert space of (9) can be represented ' ' as a direct
product of the Hilbert spaces of a U(1) Kac-Moody
(KM) algebra, ' a level-N SU(M) KM algebra, and a
level-M SU(N) KM algebra. This decomposition is a
generalization of the spin-charge separation in the 1D
Hubbard model. Notice that the total central charge of
the above three KM algebras is

1+ N(M —1) + M(N —1)
M+N N+M

which is equal to the central charge of (9). The above

three KM algebras are generated by currents J„=eN
xk" tl„k" (the electric current), j„' =t,&l" rl„k'~, and
J„=T,t,k" d„X ', where t [T ] are the generators of
the SU(M) [SU(N)] Lie algebra. The currents in the
SU(N) KM algebra are just the currents in (6) which

couple to the SU(N) gauge field a„. To obtain the physi-
cal edge excitations in the electron wave function, we

need to do the projection to enforce the constraint (6).
Because of the above decomposition, the projection can
be easily done by removing from the Hilbert space of (9)
the states associated with the SU(N) KM algebra. The
remaining physical edge states are generated by the

zt Z]
211 =+6(Z3 zi, ) +

il ~i

After the projection the two resulting electron wave
functions are given by 422(g~) and (A ~1) (gM )
which describe the same state since Aqq~ (All) . Simi-
lar derivations apply to other values of m and m', and
the physical Hilbert space 'P can be shown to be at
most one dimensional for M=1. This is just the result
of the non-Abelian CS theory. More detailed discussions
of the structures of excitations in the NAF state will ap-
pear elsewhere.

We would like to remark that although the gauge field
mediates no long-range interactions between quasiparti-
cles due to the CS term, the quasiparticles y„are not
really equivalent to the "free" quarks in the absence of
the gauge field. This is because the quasiparticles are
dressed by non-Abelian flux which carries the SU(N)
charge. Thus it is conceivable that when M = 1 the
quasiparticles behave like Abelian anyons with no inter-
nal degree of freedom, as has been shown in the above
discussion.

Now let us discuss another fascinating property of the
NAF state —the gapless edge excitations' ' in the NAF
state. We will follow the discussions in Ref. 6. First let
us ignore the constraint (6) and set a„=0 in the mean-
field theory. In this case the edge excitations are those
of the integer quantum Hall states' described by
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U(1) xSU(M) KM algebra. The central charge of the
U(1) xSU(M) KM algebra is given by c =M(MN+1)/
(M+N) are the specific heat (per unit length) of the
edge excitations ' is C =c (tr/6) T/v. The electron
creation operator on the edge is given by c =k

which has a propagator (x —vt) along the edge.
We would like to point out that in general the edge exci-
tations may have several different velocities in contrast
to what was implicitly assumed above.

The above construction can be easily generalized in a
number of directions: (a) We may decompose electrons
into partons with difTerent electric charge. (b) We may
choose a diA'erent mean-field ground state which breaks
the SU(N) gauge symmetry. Actually (a) is a special
case of (b). ' The effective CS theory for (a) and (b)
will in general contain several Abelian and non-Abelian
gauge fields. In particular, the FQH states studied in
Refs. 3 and 6 correspond to breaking the SU(N) gauge
symmetry into lU(1)] ' gauge symmetry. One in-
teresting NAF state in case (a) is the v = (1+ 2 + 2 )

state. Its non-Abelian statistics are described by
the level-2 SU(2) CS theory. The electrons in such a
state lie in the first three Landau levels.

We would like to argue that the NAF states studied in
this paper are generic states and their non-Abelian topo-
logical orders are robust against small perturbations. (i)
The non-Abelian structures in the NAF states come
from the SU(N) gauge symmetry of the mean-field
ground state. To destroy the non-Abelian topological or-
ders (and the associated non-Abelian statistics) we must
break the SU(N) gauge symmetry through the Higgs
mechanism. This cannot be achieved unless we add
finite perturbations. (ii) All excitations in the NAF have
finite energy gap and the interactions between them have
finite range. Therefore the NAF states do not have in-
frared divergences and it is self-consistent to assume the
interactions between the excitations do not destabilize
the NAF states. Thus we expect the properties studied
in this paper are universal properties of the NAF states
which are robust against any small perturbations. The
NAF states are a new type of the infrared fixed points
and the NA topological orders should appear as a gen-
eral possibility for the ordering in the ground states of
strongly interacting electron systems.

It is not clear under what conditions the NAF states
might be realized in nature. However, since the NAF
states are generic states, they may appear in experiments

under the right conditions, especially when the electron
density is low and higher Landau levels are important.
The low-density FQH states are largely unexplored in
experiments.
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