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Quantum Liquid in Antiferromagnetic Chains: A Stochastic Geometric Approach
to the Haldane Gap
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The S = 1 quantum antiferromagnetic chain with the Hamiltonian 0=P; S;"S;+~ +SrSf+ ~

+A,S;S;+~+D(S;) 2 is studied. By developing a (path-integral-type) stochastic geometric representation
and using the ideas of percolation, we find that the Haldane phase with a unique disordered ground state
and a gap can be regarded as "liquid. " The large-D phase and the Neel ordered phase are identified as
"gas" and "solid, " respectively. We introduce a new order parameter that distinguishes the Haldane
phase from other disordered phases such as the large-D phase or the dimer phase.

PACS numbers: 75.10.3m, 75.30.os, 75.50.Ee

Haldane' made a fascinating conjecture that the spin
S quantum Heisenberg antiferromagnetic chain with the
Hamiltonian

H=gS;S;+i+S(S(+i+A.S;.S;.+i+D(S )

Let 0 be the Hamiltonian for a finite periodic chain of
length L. The ground-state expectation value of an
operator A can be expressed as

co(A) = lim [Tr(Ae ~ )/Tr(e ~")].

has a unique disordered ground state and a finite excita-
tion gap when S is an integer, while it has a critically or-
dered unique ground state and no excitation gap when S
is a half odd integer. The conjecture has been tested
by numerical calculations, experiments in quasi-one-
dimensional systems, ' and rigorous studies, but the
problem for the Heisenberg model with small integral S
(such as 1) still remains to be understood theoretically
In the present Letter we study the model (1) with S =1,
and develop a new picture of the Haldane gap.

The Haldane conjecture' implies that the model (1)
with S=1 has a unique disordered ground state and an
excitation gap in a finite region of parameter space con-
taining the isotropic point D =0, k =1. Further numeri-
cal studies indicate that the model has at least two more
distinct phases in the region X ~ 0, namely, the Neel or-
dered phase with two ordered ground states, and the
large-D phase with a unique disordered ground state and
a gap (Fig. 1). The existence of the large-D phase was
first suggested by Botet, Jullien, and Kolb from a nu-
merical observation that there is a phase boundary of
massless theories. But the distinction between the
large-D phase and the Haldane phase was not clear since
they are both characterized by a unique disordered
ground state and a gap.

Here we will characterize the large-D, the Neel, and
the Haldane phases as "gas," "solid, " and "liquid"
phases, respectively, of a stochastic geometric represen-
tation of the model. This picture naturally leads us to a
definition of a new order parameter that distinguishes
the Haldane phase from other disordered phases includ-
ing the large-D phase and the dimer phase. Recently,
den Nijs and Rommelse ' have reached a somewhat
similar conclusion from an analogy with the preroughen-
ing transition in crystal surfaces.

We now follow the standard procedure to develop path-
integral representation of the system. By using the Lie
product formula (or Trotter-Suzuki formula), " we write
Tr(e ~ ) =lim„Tr(T"~), where T is defined by

T= 1 — (S;+S;+i+S; S;+) )
l n

&& exp ——S;.S;+ ) (S')
n n

FIG. 1. Numerically obtained phase diagram for the ground
state of the S=1 Heisenberg antiferromagnet with uniaxial
anisotropy. In the shaded region, we have proof that the Hal-
dane phase exists in the approximate model with a restricted
Hilbert space.
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We let L and nP be even integers, and take the limits
L,n, P ee later. We realize the trace as Tr (T"~)
=gc &C~ T"P~C), and interpret T as the "time-evolution
operator" for the unit time interval of I /n .

~
C) is

summed over all the basis states specified by the eigen-
values of S; ( = +' 1,0).

In our first stochastic geometric representation, we re-
gard an arbitrary basis state

~
C) as consisting of + and

"particles" located in the background "sea" of
0 states. Then the action of the operator T can be
interpreted as pair creation of + and — states
"00" "+—", pair anni hi lation "+—" "00", or
propagatIon "0+" "+0". This means that the present
model can be interpreted as a system of charged particles
(+ states) and their antiparticles (—states) propagating
and being created or annihilated in pairs in the one-
dimensional space.

Then we get a stochastic geometric representation
Tr(T"~) =Jr W(I ), where I is summed over all the pos-
sible "histories" of + and —particles in the two-
dimensional space-time. Each history is a collection of
"world loops" (which we call + — loops hereafter)
formed by tracing the trajectories of the (anti)particles
as in Fig. 2. The statistical weight W(I ) is a product of
the following terms. For each vertical segment (of a
loop) there is a factor exp( —D/n), and for each hor-
izontal segment a factor —1/n For e.ach pair of neigh-
boring + or —states, there is a factor exp[ —(X/n)
XS;S;+~

]. It is extremely important for us that we get a
positive quantity after multiplying all these factors. This
fact allows us to interpret the quantity W(I )/Tr(T"~) as
the probability that a configuration I appears. There
are similar representations for the expectation values of
operators.

We first consider the case where the crystal-field an-
isotropy D is large. Since each + or —state gets a
weight of exp( —D/n), one expects that the + —loops
are hard to exist. Then the whole stochastic geometric
system should look like gas or the "confinement" phase
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FIG. 2. A typical space- (horizontal) time (vertical) con-
figuration of the + —loops.

of the + —loops. The property of the gas phase is sum-
marized in the following theorem.

Theorem l (characterization of the large Dp-hase)—When D —2X is sufficiently large (say, ~ 28), the
ground state of the Hamiltonian (I) is unique, all the
truncated correlation functions in the ground state decay
exponentially, and there is a finite excitation gap im-
mediately above the ground-state energy. In the stochas-
tic geometric representation, the probability to find
a+ —loop (containing a given space-time point) which
has the width co (in space) and the length r (in time
where the unit lattice spacing is 1/n) is bounded from
above by exp( —co/g —mr). Here g and m are finite
constants which are independent of the system sizes L, P,
and the decomposition number n

The theorem is proved by examining the + —loop
representation for the various expectation values (which
we do not make explicit in the present Letter), and by
making use of the cluster expansion technique based on
the powerful convergence criterion obtained by Kotecky
and Preiss. '

We conjecture that the whole large-D phase in the
phase diagram of Fig. 1 is indeed the gas phase of the
corresponding stochastic geometric system. As the pa-
rameter D becomes smaller, the average size of the +-
loops should become larger. We can prove that, for
each fixed values of X ()0), there exists a finite critical
value D, (k), and for D (D, (X), + —loops percolate in
the sense that there exists (with probability I ) an
infinitely large loop (after taking the limits L,P

~). We expect that the line in Fig. 1 separating the
large-D phase from the other two is D, (k). The follow-

ing theorem states that the isotropic Heisenberg point
1, =1, D =0 is not in the gas phase. Thus it establishes
that the mechanisms leading to a disordered ground state
and a gap in the Haldane phase and the large-D phase
are indeed diferent. '

Theorem 2 (no gas theorem)-. —At the SO(3)-in-
variant point k=1, D =0, there exists (with probability
1) an infinitely larger + —loop or an infinite cluster of
neighboring + —loops' (in the limits L,P ee and for
sufficiently large n ).

Now let us focus on the region D (D, (X), in which an
infinitely large + —loop appears. According to the
phase diagram of Fig. 1, this region should include both
the Neel ordered phase and the Haldane phase. An
essential step in understanding of the Haldane-gap phe-
nomena is to realize that the existence of the infinitely
large + —loop induces a kind of order in the stochastic
geometric system. To make this point explicit, we define
the internal orde~ parameter p as follows. Given a
configuration I, we look only at its "time slice" (at a
fixed time, say, r =0) to get a string of 0, +, and —.We
then throw away all the 0's from the string, and define
new spin variables a~ =+ 1 as the value of the kth
nonzero element (counted from the left). ' The internal
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order parameter is defined as

lim ( —1)" "(ot, crt, ), (3)p
[a —a'i-

where the average ( . ) is with respect to the probabili-
ties associated with the + —loop configurations (i.e., the
equal-time average in the ground state). '

It is clear (from Fig. 2, for example) that the infinitely

large + —loop enforces a strong (antiferromagneticlike)
long-range order in the variables ag, thus generating
a nonvanishing p. ' Finite + — loops also contribute
to p because the loops interact through the factor
exp[ —(k/n)S;S;+1]. It is expected that p is fairly close
to 1 when X —D is su%ciently large.

We conjecture that, in the phase diagram of Fig. 1,
the large-D phase is characterized by p =0, and the oth-

~ ~ ~ 0 ~ ~ ~ Q+Q ~ ~ ~ Q —0 ~ ~ o Q+0 i ~ i 0 —Q. . . Q+0. . . 0

er two phases by @&0. It should be stressed that the
nonvanishing internal order parameter p does not neces-
sarily imply the existence of an observable long-range or-
der such as Neel ordered. The definition of p involves an
expansion in a specific basis, and nonlocal procedure to
pick up only the nonzero states. In the valence-bond-
solid (VBS) state studied by AIIIeck, Kennedy, Lieb, and
Tasaki, which is a rigorous example of the Haldane-
type disordered ground state, we strictly have ( —1)
& o.j, o.i, =1, a perfect internal order without Neel order.

There is an approximate model which captures the
essential features of this region, and can be studied
rigorously. The model' has the same Hamiltonian as
(1), but its Hilbert space Po is smaller than the original
one. The space iV'0 consists of all the linear combina-
tions of the basis states of the form

where 0. 0 represents an arbitrary number (including
none) of 0 states. Note that the perfect internal order is

built into this space. We expect that the model approxi-
mates the original model fairly well when the internal or-
der parameter is close to 1.

When working within the space &0, one can represent
an arbitrary state by specifying the locations of 0 "parti-
cles" in the background of order + —"sea." Let us

derive our second stochastic geometric representation of
Tr(T"~) based on this new interpretation. The action of
the time-evolution operator T on an arbitrary state iC)
can be now interpreted as pair creation of two 0 states
"+—" "00", pair annihilation "00" "+—", or
propagation "0+" "+0". Now our model can be in-

terpreted as a system of (chargeless) particles propaga-
ting and being created or annihilated in pair in the one-
dimensional space. Note that the internal order of the
background + and —states is essential for this interpre-
tation. The similar interpretation should be possible in

the original model provided that there is a suKciently
strong internal order.

Again we get a representation Tr(T"P) =+~8'(A),
where the summation is over all the configurations A of
the "world loops" (which we call 0 loops) formed by
tracing the trajectories of the 0 particles. The statistical
weight W(A) is a product of a factor exp[(D —2X)/n]
for each vertical segment (of a loop), and a factor —1/n

for each horizontal segment (where we have shifted the
Hamiltonian by a constant). Again W(A) is positive, so
we can make use of the probalistic concepts.

When 2X —D is sufficiently large, we should have a
gas phase where the density of the 0 loops is low. From
the viewpoint of + —loop system, this looks like a solid
phase because the configurations are mainly dominated
by the background ordered + —sea. The internal order
now manifests itself as an observable long-range Neel or-
der since the 0 loops modify the classical Neel state lo-
cally. We conjecture that the whole Neel phase is the

solid phase of the stochastic geometric system of the
+ —loops (and/or the gas phase of the 0 loop system).

As 2k —D becomes smaller, the average size of the 0
loops becomes larger and there can be a percolation tran-
sition of the 0 loops. When this happens, the infinitely
large 0 loop modifies the classical Neel state in a global
way, so the long-range Neel order immediately vanishes.
We end up with an exotic phase characterized by strong

fiuctuation, an unobservable internal order, and no
long range 1Vee-l order, and in which infinitely large
+ —loop and 0 loop coexist. We call this phase liquid,
and conjecture that the whole Haldane phase is the
liquid phase. Note that such a phase can exist only in
the models with integral spins since there is no "charge-
neutral" object like 0 particles in a model with a half-
odd-integer spin. The following theorem and its proof
justify our picture.

Theorem 3 (Haldane gap in the approximate
model). —Within the space Po, the ground state of the
Hamiltonian is Neel ordered' when X —D) 2, and is
disordered when 3X —2D & 2 and X~ D. In the latter
case, the ground state is unique, arbitrary truncated
correlation functions (in the ground state) decay ex-
ponentially, and there is an excitation gap immediately
above the ground-state energy.

Our new approach recovers most of the predictions
made by the field-theoretic methods. ' One of the new
consequences of our approach is that we can now con-
clude the large-D phase and the Haldane phase are dis-
tinct. The picture suggests some criterions to distin-
guish between the two phases, the simplest one being the
measurement ' of the internal order parameter p. The
peculiar nature of the liquid phase indicates that the en-
ergy gap in a chain of length L with free boundary con
ditions behaves as AE(L) = exp( L/g) in the Halda—ne
phase, but not in the large-D phase. This behavior has
already been observed numerically by Kennedy. ' In
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Ref. 8 we also show that the autocorrelation function of
the z component of the spin variable co(S;e ' 5;e' )
[where co() being the ground-state expectation value in

the L ~ limit] should have the asymptotic decay
'/ exp( —mr) in the Haldane phase, and

x exp( mr—) in the large-D phase.
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