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Relation between Persistent Currents and the Scattering Matrix
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We show that the differential contribution, at energy E, to the persistent currents of independent elec-
trons in infinitely extended quantum systems is given by (2zi) ~'9,lIndetS(E,¢)1dE, where S(E,¢) is
the (on-shell) scattering matrix. We apply this result to the calculation of the persistent currents in two
examples: a mesoscopic loop connected to one infinitely long lead, and a phase pierced by a flux line. In

the last example spin plays a remarkable role.

PACS numbers: 72.10.Bg, 11.20.—e, 72.20.My

In this Letter we consider the persistent currents in
infinitely extended quantum systems of independent
electrons in two dimensions. A persistent current is
defined with respect to a point. It is given by the total
current through a line that extends from that point to
infinity, in the absence of currents through the external
leads. We designate this point by a flux tube which is
infinitesimally thin and which passes through the point.
The flux denoted by ¢ may be either finite, or infi-
nitesimal, ¢ =B-ds, where B is a finite magnetic field.
Allowing the persistent-current definition to include the
two limits provides a unified treatment of Aharonov-
Bohm interference effects, and orbital magnetism.

Two classes of systems for which our considerations
apply are (i) mesoscopic networks and (ii) continuous
media. The mesoscopic networks are coupled to infi-
nitely long, ordered leads (waveguides) with flux en-
closed by the internal loops. The rings may have disor-
dered potential associated with them. A simple example
is shown in Fig. 1. An example of the second class is the
persistent currents around the origin, pierced by a flux
tube, for free electrons in the plane when all states below
the Fermi energy are occupied.

The persistent currents in finite systems, and, in par-
ticular, in isolated rings, were first studied by Bloch in
1965 and subsequently by several authors,' and were ob-
served by Levy er al.? In this case the persistent current
carried by the nth eigenstate is —dE,(¢)/d¢. For un-
bounded systems the spectrum will, in general, have both
a discrete and a continuous part. The contribution of the
discrete eigenvalues to the persistent currents is still
given by —dE,(¢)/d¢. Our purpose is to show that the
scattering-state contribution to the persistent currents is

dI(E,$) =Qnri) ~'9,lindetS(E,¢)1dE

=1/m)9, [ZJJ(E,Q))JdE, (1)
J

where dI(E,¢) is the differential contribution to the per-
sistent current at energy E and S(E,¢) is the on-shell
scattering matrix. The §,(E,¢) are the scattering phase
shifts [i.e., exp(2i8;) are the eigenvalues of S(E,¢)].

76

Here are some general properties of the persistent
currents that can be read off directly from Eq. (1).
First, since S(E,$) is unitary, its determinant is of
modulus 1, and the right-hand side of Eq. (1) is a real
number. Second, as the determinant is unitary invariant,
the persistent currents are gauge invariant, and periodic
in ¢ with period ¢go=h/e. Third, in the special case that
there are no magnetic fields besides the one associated
with the flux ¢, S(E,¢) =S'(E, —¢), by time reversal,
where the superindex ¢ denotes transpose. As a conse-
quence, detS(E,¢) is a symmetric function of ¢, and the
persistent currents are antisymmetric functions of ¢, as
expected on general grounds.

It is instructive to compare Eq. (1) for the persistent
currents with the Landauer formula® for the conduc-
tance g, which expresses it as a certain function of the
scattering matrix g(S). The distinct features of these
two formulas is that the Landauer formula does not in-
volve derivatives with respect to ¢ and has the property
that g(S) =g(exp(i#)S) with @ real valued, but other-
wise arbitrary. Equation (1), in contrast, is linear in
d0/d¢. We learn that the conductance and persistent
currents give complementary information on the scatter-
ing matrix.

Equation (1) is a consequence of an identity in scat-
tering theory that relates the variation of the on-shell
scattering matrix to the variation of the Hamiltonian H
(we assume of course that H admits a good scattering

FIG. 1. An ideal one-dimensional ring, coupled to a perfect,
infinite, one-mode wire. The vertex that couples the ring to the
wire is described by the unitary matrix in Eq. (6). a, B, 7, and
r are the entries in that matrix and their meaning is noted by
the arrows.
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theory):

SindetS(E)=— Qni)Trz(6H) . 2)

det and Trg denote the determinant and the trace re-
stricted to the energy shell (this is explained in some de-
tail below). The study of detS goes back to J.
Schwinger, and Eq. (2) is related to, among others,
Wigner’s time-delay and Krein’s formulas.*

We recall some basic facts of scattering theory that we
need in order to explain the notation used above, and in
order to outline the derivation of Eq. (2). Let |E, 0, +)
denote the incoming and outgoing scattering states at en-
ergy E.° o labels the scattering channels. The simplest
situations have a finite number of channels (this is the
case for mesoscopic networks like the one in Fig. 1,
where the number of channels is the total number of
modes, at energy E, in the waveguide that extends to
infinity). In the case of infinitely many channels, @ can
be either a discrete or a continuous variable. For exam-
ple, in potential scattering from noncentral potentials, it
is natural to choose @ to denote the direction of the
scattering state (i.e., a point on the sphere). The nor-
malization we choose is (E,w, *+ |E' o'+ )=6(E —E')
x6(w — '), in the case that w is a continuous variable,

SIndetS () =TrlST (NS (N =X [{f, 0, +|6(f,0,+)) —{f, 0, — |6(f,0,— N1,

where we used the fact that §({f, 0, — [f,®, —)) =0.

The basic fact that characterizes the incoming and
outgoing scattering states is that they satisfy the integral
equation

slf,w,i>=def(E)Gi(E)6H|E,w,i), (5)

where G + (E) are the retarded and advanced Green
functions, so that

G+ (E)E 0w, £)=(E—E'%xic) ' E\ o, +).

Inserting Eq. (5) into Eq. (4) and using the principal-
value theorem gives Eq. (2) in the limit that |f|* approx-
imates a & function.

Equation (1) now follows from the fact that the
current around the flux tube, in the state |y), is
I(y,0) =~ y|dH/do|w).

We shall now turn to two applications of Eq. (1). The
first application deals with the persistent current in the
simplest mesoscopic system and we shall rederive results
first obtained by Biittiker by different means.® Consider
an ideal one-dimensional ring of length L without disor-
der, attached to a perfect, infinite one-mode wire and
threaded by an Aharonov-Bohm flux ¢ as in Fig. 1. The
vertex that connects the loop to the wire is described by a
3x3 unitary matrix U which relates the ingoing and out-
going amplitudes at the vertex:

r a a
UE[aﬂy].
ayp

(6)

and (E,0,*|E' 0 *)=6(E—E')s,., when it is
discrete. For the sake of notation we assume below that
w is a discrete variable.

The scattering matrix is S=[(T.|E,0,+XE, o,
—|)dE.> Trg(-) in Egs. (1) and (2), is defined by

Tre(A)=D(E,0,+ |A|E,0,+). 3)

For networks, the (on-shell) scattering matrix is the fa-
miliar unitary matrix that relates the incoming and out-
going channels of all external leads. The scattering
states are normalized to carry unit current. In general,
the on-shell scattering matrix is a unitary matrix
—depending parametrically on E—with entries
S(E)q... Inorder to write these matrix elements as ma-
trix elements in the original basis |E,w, =) we need to
factor a Dirac 6 function from the scalar product. The
derivation of Eq. (2) that we now describe shows how
this factorization is done.

Let |f,0,+)=fdE f(E)|E,w,+), with f square in-
tegrable, arbitrary, but fixed. S defines a unitary map,
from the vector space spanned by |f,w, —) (as o varies
over the channels) to the vector space spanned by
|f,0,+), whose matrix elements are S(f), . =(f,
o, — |f,w',+). For this unitary matrix one has

4)

l

The four real coefficients, a, B, 7, and r, are constrained
by the three independent unitarity relations r2+2a%=1,
a’+p*+y?=1, and a®+2By=0. The physical interpre-
tation of r, @, B, and 7y is indicated in Fig. 1. Since the
infinite wire has one scattering channel, the on-shell
scattering matrix of Eq. (1) is a complex number of
modulus 1—the reflection amplitude— given by

S(E,9)=—D*(kL,$/9)/D(KL,9/90) ,
where E =A%k %/2m and
D(x,y)=Blcos(x) —cos(2zy)] —iysin(x) .
S(E,¢) is manifestly unitary, and
[IndetS(E,9))'=(D*'D—D'D*)/|D]
=2i(ReD)'(ImD)/|DP

(the prime denotes derivative with respect to flux).
From Eq. (1) we obtain for the persistent current I when
all the states up to kr are occupied

_ hea?

i . .
X dik sin(kL)sin(2r¢/¢o)

1
0 lD(kL,(I)/(D()”2

@)

This equation contains a factor of 2 for the two spin
states.

The limiting case of an ideal ring disconnected from
the wire considered in Ref. 1, corresponds to the limit
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a— 0, B— 1, and y— 0. Since a— 0 multiplies the in-
tegral, the contribution to the persistent currents for
most values of k will vanish and only those k which make
the denominator of the integrand vanish can contribute.
D(kL,p) =0 for kL =0mod(27), ¢=0mod(¢y), and
kL =rmod(2x), ¢ =+ mod(gy). At these points the in-
tegrand approaches a sequence of § functions that corre-
spond to the contributions of the populated discrete ener-
gy levels of an isolated ring. One then recovers the stan-
dard expressions for the persistent currents in an isolated
ring. It is noteworthy that the scattering data for an al-
most disconnected network convey information about the
persistent currents carried by the (almost) bound states
on the ring. This is reminiscent of what happens in the
Levinson theorem in scattering theory. A similar
analysis can be done for the one-dimensional ring with
two leads, allowing an explicit comparison of the conduc-
tance and persistent current.’

As a second application we consider a macroscopic
system of free electrons in the plane. We shall compute
the persistent currents at zero temperature around, and
due to, a flux line that pierces the plane. The corre-
sponding scattering problem was considered in the origi-
nal Aharonov-Bohm paper® for the spinless case and by
Hagen® for the spin-§ case, which shows a delicate
effect that has to do with the o B interaction, with B §-
function-like. As we shall see, this leads to the rather re-
markable result that the contributions to the persistent
currents from the two spin states cancel, rather than add,
as it does in the previous example and as one might
naively expect.

Let 0 < ¢ < ¢. The phase shifts are?®®

(z/2)¢/¢0, if m=0ands,=— %,

Sm(p) =
¢ {(n/2)(|m|—‘m+¢/¢o|), otherwise .

(®)

The phase shifts correspond to a singular scattering
problem because they do not decay as |m|— oo and the
sum in Eq. (1) is not absolutely convergent. A reason-
able way to regularize the sum is to define it as
lim,, —. s 2m| < p. The contributions to Eq. (1) from m
and —m cancel in pairs irrespective of spin and this
leaves the contribution of m =0. In the spinless case
m =0 gives a finite contribution, but in the spin—'f case
the two spin states at m =0 carry opposite currents. The
final result is

—Er/2¢0, if 0 < ¢ < ¢g spinless ,
= 9)

0, spin + ,

where Ef is the Fermi energy. By the general antisym-
metry and periodicity property, the nontrivial function in
the spinless case extends to all ¢ as a periodic, antisym-
metric step function.

We note that by similar arguments, the differential
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contribution to the current density j(x) is

dE SlndetS(E,A)
2mi SA(x) ’

where A(x) is the vector potential.

We now close with a remark about how the persistent
currents scale with the characteristic size of the system.
For an isolated ring of length L, the persistent currents

dj(x)= 10)

‘are known to scale like O(1/L). On the other hand, for

the two examples considered here, the persistent currents
are typically of O(1). This not surprising for electrons
in the plane for there is no length scale in this problem
besides ks . However, the mesoscopic networks such as
those considered here do have a characteristic (large)
length scale given by the size of the loop and it is not im-
mediately obvious what protects the persistent currents
from scaling like 1/L as they do for the isolated ring. To
analyze this, note that in the examples considered above
(zi) ~'IndetS(E,¢) =F(kL), with F a periodic function
of its argument, and k=(Q2mE/h?)"2. This turns out to
be a general property of scattering matrices for networks
with the generalized Neumann boundary conditions at
the vertices (and commensurate lengths for the finite
links in the network), and in addition, is the high-energy
behavior for networks with point vertices even if the
boundary conditions are not Neumann. In such net-
works, let F(t)=(F)+dP(t)/dt with P the periodic
indefinite integral of F and (F) independent of k. Since
the persistent current is (A %/m) f¢/dk kF'(kL), integrat-
ing by parts one finds

I=(FYEr+h*kp/mL)P'(kpL)+0(L "2 . (1)

(The prime denotes derivative with respect to the flux.)
We see that if (F)'#0, the persistent currents are propor-
tional to Er in the L— oo limit. However, whenever
(F)' =0, the persistent currents are proportional to kr/L
in the L — oo limit and the scale of the system enters.
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