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We analyze density fluctuations of a self-avoiding chain in a random environment by a computer
simulation. The density at a site is obtained by computing the number of times a monomer visits a par-
ticular site on a finite lattice. Although the chain obeys self-avoiding-walk statistics, the density measure
appears to be multifractal. We compute 7(g) and f(a).

PACS numbers: 61.41.+¢, 05.40.+j, 36.20.Ey

The properties of polymers in disordered media have
recently received much attention.'™ There are a variety
of physical situations in which a polymer is placed in a
highly disordered medium. For example, in a porous
medium, such as a gel, this situation arises as a first
step in a separation process, such as gel electrophore-
sis.® Biological systems also often involve long macro-
molecules in a highly inhomogeneous environment.

To understand this problem theoretically, an appropri-
ate model must be introduced. The chemical conditions
are often such that the polymer is self-avoiding, and
therefore the polymer can be represented over a wide
range in length scale as a self-avoiding walk (SAW).
The interaction between the polymer and the disordered
medium is most simply represented by a random poten-
tial, with short-range correlations. In analytical work,
Gaussian statistics for the potential are most frequently
assumed;? in numerical work, hard-core repulsion be-
tween the chain and the medium is most often em-
ployed.® Physical differences between these two choices
may arise, coming from the fact that there is a lower
bound to the value that the potential can assume, when
these hard-core statistics are taken.?

Statistical properties of this model can be understood
by taking appropriate ensemble averages. There are two
kinds of averages that can be done: an average over
different chain conformations and an average over
different random media. The average over different ran-
dom media has been frequently performed first, to reveal
how the statistics of the SAW are modified by the ran-
dom potential. Annealed and quenched averages have
both been considered. In the case of a random potential
with a lower bound, general arguments of Cates and
Ball? show that the annealed and quenched averages are
equivalent.’

Their argument can be summarized as follows. In a
large enough system, a single polymer chain in a fixed
(quenched) environment will explore many different en-
vironments. Averaging the statistics of the polymer in
these different locations is equivalent to averaging the
chain over different realizations of the same random po-

tential. Since these realizations in different locations will
be uncorrelated, this is equivalent to taking an annealed
average.

The annealed statistics of a chain in a short-range ran-
dom potential can be easily computed. For the case of
soft local intrachain interactions, the random potential
introduces an attractive two-body term, leading to a tri-
critical point as the local repulsive term is decreased.?
For the case of a complete self-avoidance, the disorder
can be integrated out giving no effect on the statistics of
the chain. In summary, we know the following: The
quenched statistics of an SAW in a short-range random
potential whose probability distribution has a lower
bound has the same statistics as an SAW without any
random potential. These results have been confirmed
by computer simulation. Here we are not considering
hard-core disorder close to the percolation transition
which introduces complications. Aside from this case,
averaging over the random potential does not lead to any
new physical effects in the systems described above.

There are, however, important properties that are left
out by averaging out over disorder first, and one might
expect that some properties of the system are very sensi-
tive to the presence of a random potential. For example,
one might be interested in the frequency at which an ar-
bitrary site on the lattice is visited. Physically, one could
measure this by averaging the density in some region
over time, say by the use of fluorescence, and from this
compile a map of frequency as a function of position.
This quantity, the time-averaged monomer density
(TAMD), should be greatly affected by the presence of a
random potential, since in the absence of a potential the
averaged density is constant.

A Gaussian chain in the presence of a random poten-
tial will essentially collapse to fit into regions of low po-
tential energy. Its density outside these regions will be
exponentially suppressed. When one includes strong
enough excluded volume interactions the chain is no
longer collapsed but is now extended with the fractal di-
mension of the usual SAW. However, it will still avoid
regions of high potential, and so it is expected that the

© 1991 The American Physical Society 731



VOLUME 66, NUMBER 6

PHYSICAL REVIEW LETTERS

11 FEBRUARY 1991

time-averaged monomer density will still show large fluc-
tuations. Because the chain is self-similar over distances
much greater than the correlation length of the random
potential and the persistence length, and distances much
smaller than the radius of gyration of the polymer, we
expect the TAMD to be self-similar over the same range.
Because we expect the TAMD of a long chain to be
self-similar and to show large fluctuations, it is an obvi-
ous candidate for a “multifractal measure.”?-!°

In fact, one can speculate via a simple heuristic argu-
ment that the behavior of the TAMD is multifractal.
Consider a long chain that can take on all conformation
with the restriction that its center of mass is a constant
value. We expect that if we were to cut the chain into
smaller chains that have a radius of gyration R, equal to
D, then the TAMD for these smaller chains should be
very closely related to the TAMD of the chain we started
with. In fact, if we were to pin the center of mass of a
cut chain to some location, the TAMD in that region, of
size D, should be almost the same as the TAMD of the
entire uncut chain, up to a multiplicative constant. To
determine this constant, coarse grain the TAMD of the
uncut chain into regions of size D. This coarsed-grained
TAMD in the region of the pinned smaller chain gives
the desired multiplicative constant. This is precisely the
structure one finds in multifractal measures. The mea-
sure can be constructed by subdividing the support into
successively finer scales, with the measure on a smaller
scale determined by the physics that occurs locally, times
a multiplicative constant that is determined from behav-
ior on the next larger scale.

In what follows we present numerical evidence that
the TAMD is multifractal and numerically determine
7(g). As mentioned above, a real system where these re-
sults can be applied is a dilute solution of polymers inside
a gel. If we observe the TAMD then it should look mul-
tifractal up to a length scale of the radius of gyration R,.
The density when coarsed grained on length scales much
larger than R, should become smooth, and fluctuations
in density should cease to obey multifractal scaling.

While many previous studies have concentrated on the
critical behavior at the percolation threshold,*> this
work shows that even at dilute concentrations far below
the percolation threshold the TAMD is drastically
different than when no impurities are present.

The simulations were carried out in two dimensions
because of the large amount of computer time involved.
All computations were carried out on a Cray X-MP.
The system chosen was a polymer chain on a square lat-
tice with hard-core on-site repulsion. The environment
was represented by obstacles also with hard-core on-site
interactions. These were randomly positioned and 20%
of the sites were filled. This value is far enough away
from the percolation threshold as to make the probability
of starting the chain on a finite cluster rather small. If
this happened, the run was aborted and new initial con-
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ditions were chosen. This eliminated the possibility of
the chain being trapped and spending all its time in a
small region of the system rather than sampling all the
available realizations.

The chain was grown on a lattice using a “‘slithering
snake” algorithm as developed by Wall and Mandell. '
The algorithm consists of removing a chain end at ran-
dom and reattaching it to the other end. If the excluded
volume criterion is met and if there is no impurity at the
new position of the end then the move is accepted, other-
wise the chain end is put back in its original position.
Periodic boundary conditions were used in the simula-
tion. The simulation was run for 10* Monte Carlo steps,
where each step involved N2 attempted movements of
the chain, /V being the length of the chain used. All the
chains were grown from a point source and were given
five N2 movements to equilibrate. At the end of each
subsequent Monte Carlo step, properties of the chain
such as the radius of gyration, the distribution of the ra-
dius of gyration, and the monomer density distribution
were calculated. The simulation was first run for a lat-
tice of size 512%512 to check whether we recovered
SAW statistics in the presence of disorder. We found
that the exponent v was not affected in agreement with
previous simulations,* with v=0.722+0.027. In order
to estimate the fluctuations in the chain’s radius of gyra-
tion, we computed the distribution of the radius of gyra-
tion. We found very little effect of disorder on the distri-
bution,'? at least for the concentration of impurities
studied in this simulation. We also looked at the mono-
mer-monomer correlation to see if there was any effect of
disorder but could not find any noticeable difference.

Next we obtained the TAMD by considering a finite-
size lattice and counting the number of times a site on
the lattice was visited by the polymer. In order to make
sure that the statistics of the chains were not affected by
the use of this smaller lattice we again computed the
scaling exponent v and found it unchanged. The lengths
of the chains that were used in these calculations were
such that chain overlap due to periodic boundary condi-
tions was unlikely, but the end-to-end distance of the
chain almost spanned the lattice. A typical conforma-
tion of the TAMD is shown in Fig. 1. This is for a lat-
tice of size 32x32. As can be seen there are huge fluc-
tuations from site to site on the lattice. The range of
density is almost 4 orders of magnitude for this particu-
lar plot.

We used a variety of different lattice sizes in our simu-
lations, 24x24, 32x 32, 40x40, 44x44, and 64 X 64 and
the corresponding chain sizes were 45, 60, 80, 100, and
120. The concentration of impurities was kept at 0.2 for
all system sizes. The results were then averaged over ten
realizations of disorder. Our results are most accurate at
the largest lattice size 64X 64, as finite-size effects are
least important here. Results for smaller lattices are
quite similar.
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FIG. 1. A density surface obtained from the Monte Carlo
simulation. Density is on the z axis. The points of maximum
density correspond to “holes™ in the cage. This contour was
obtained for a chain of 60 links in a 32x 32 cage with a density
of impurities of p =0.2.

We denote the TAMD at site i by ¢;, which has been
normalized so that X;¢; =1. Multifractal behavior in a
system of size L X L can be characterized by the sequence
of mass exponents 7(q) defined as
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We calculated 7(q) two ways and obtained similar re-
sults. The first was by averaging the density ¢; over re-
gions of size L < R, for lattices and chain lengths of
different sizes. Our most accurate determination of z(g)
was obtained by considering the lattice of size 64 %64,
and coarse graining ¢; over intermediate length scales /,
defining ¢; to be the density ¢; coarse grained over a box
of size Ix/. It is easily shown that X¢7~/"@] 9,
where d is the spatial dimension. The scaling behavior of
the TAMD as a function of / is shown in Fig. 2 for
g =+2 and g = — 2, where q is the order of the moment.
These curves are well described by power laws for
coarse-graining scales / except for when />R, and / is
equal to the lattice spacing, where in both cases one ex-
pects deviations from power-law behavior. These plots
are therefore strong evidence for self-similarity in the
TAMD.

From the power-law dependence on [/, the value of
7(g) can be extracted from the above plots at different
values of ¢. In order to satisfy multifractal scaling the
7(g) curve should be a nonlinear function of g. This can
be easily seen in Fig. 3. The point 7(g =0) corresponds
to the negative of the fractal dimension of the system.

Another quantity that is used to characterize mul-
tifractal behavior is the singularity spectrum f(a). f(a)
can be interpreted as the negative of the Legendre trans-
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FIG. 2. The scaling behavior of the TAMD for ¢ =+2 and
g = —2. The scaling behavior was computed from the data for

a chain of length 120 in a lattice of size 64 X 64 averaged over
ten realizations of disorder. ¢; is the density coarse grained
over various length scales / from /=4 to / =R,. q is the order
of the moment, while d is the spatial dimension.
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FIG. 3. The scaling of the moments z(g) with the order of
the moment g. As can be seen the solid line is a continuous
curve indicating an infinite hierarchy of exponents. The con-
centration of impurities is 0.2. The dashed line is the curve ob-
tained when there is no disorder present. The point (g =0)
corresponds to — 2.
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FIG. 4. The f(a) curve from the simulations calculated by
two methods. The solid circles represent the f(a) curve calcu-
lated by first smoothing the 7(g) curve and then taking its
Legendre transform. The solid line represents the f(a) curve
calculated by the method of Chhabra and Jensen (Ref. 13).
The point f(a)max is at +2.

form of 7(g):

flalg))=—1[z(g) —qalg)], 2)
where
_dt(q)
alq) A 3)

From Egs. (2) and (3) we calculated f(a) and the
curve is shown in Fig. 4. Because we were able to work
with a reasonably large system size, this method gives al-
most identical results to the method of Chhabra and Jen-
sen. '’

It is important to note that, if when one averages the
density in regions of size L>>R,, the nonlinearity of
7(g), as seen in Fig. 3, disappears and the TAMD can
now be characterized by simple fractal behavior. To
show the effect of the random potential on the TAMD,
we have also calculated 7(g) for the case of zero disor-
der. In the absence of a random potential every site on
the lattice has the same probability of visitation and so
the t(g) curve now becomes a linear function of g. This
is shown in Fig. 3 where the dashed curve represents the
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7(g) curve for the case of no disorder. If one were to
study the polymer in a system of periodic obstacles, the
TAMD would be the same as the case of no disorder.

In conclusion, we have shown that the statistics of
self-avoiding walks in random environments show unusu-
al properties that are lost when the regular kind of
averaging over disorder is performed. The amount of
time a monomer spends in a particular location has large
fluctuations that satisfy multifractal scaling. This should
have applications to a variety of different physical sit-
uations, and should be observable experimentally by
fluorescence techniques or by measuring reaction rates of
macromolecules in gels.
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