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Kinetic Roughening of Laplacian Fronts
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The kinetic fluctuations of a stable interface driven by the gradient of a Laplacian field are investigat-
ed. In three and more dimensions the interface width is finite. In two dimensions the width diverges log-
arithmically with time and system size. Its scaling form is derived in agreement with simulations of
diA'usion-limited erosion (antidiff'usion-limited aggregation). A crossover to algebraic roughness with an
extended intermediate scaling regime is predicted for diffusion with a drift towards the interface. Capil-
lary effects are discussed in relation to recent experiments on fluid displacement in porous media.
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A moving interface can be kinetically roughened by
microscopic fluctuations in the local velocity. Relevant
examples are deposition processes, where the fluctuations
are due to shot noise in the particle flux, and two-fluid
displacements in random porous media. If the interfa-
cial dynamics is local, the motion can be described by a
stochastic partial differential equation for the interface
position. This approach predicts universal dynamic
scaling properties for the interfacial fluctuations, in

agreement with a large body of computer simulations.
However, in many physical processes the velocity of the
interface is proportional to the gradient of some field
(e.g. , concentration, temperature, pressure, or electro-
static potential) satisfying the Laplace equation, and
hence the dynamics is intrinsically nonlocal. Two cases
must be distinguished according to whether the interface
moves in the direction of increasing or decreasing field
strength. In the first case, the Saff'man-Taylor and
Mullins-Sekerka instability drives a planar interface
into a macroscopically modulated state determined by
subtle pattern selection mechanisms. Here we address
the second case of a macroscopically stable, planar front
that is kinetically roughened on a mesoscopic scale.

Unstable Laplacian interfaces at large noise levels are
simulated by the Witten-Sander model of diA'usion-

limited aggregation (DLA), in which particles follow
random-walk trajectories and accrete to the deposit at
the point of first contact. Similarly, the basic model for
a stable Laplacian front is diffusion-limited erosion
(DLE), the reverse process of DLA. Here an initially
flat substrate is eaten away by particles that diITuse to-
ward the surface and annihilate with a substrate particle
where they hit. In the quasistatic, low-density limit the
particle concentration satisfies the Laplace equation and
the surface moves in the direction of decreasing concen-
tration. The time scale is set by the advancement of the
front.

A situation rather close to DLE arises in electrolytic

polishing' where the diAusion of "acceptor" molecules
to the anode has been identified as the rate-limiting pro-
cess. ' " The acceptors can be complex forming ions
such as CN or water molecules that are needed for the
formation of hydrated cations. ' In the steady state each
acceptor arriving at the anode immediately recombines
with a metal ion which is thereby removed from the sam-
ple. It is well known' that electrolytically polished sur-
faces are exceedingly smooth on all length scales.
Indeed we demonstrate, in accordance with previous nu-

merical results, that fluctuations are not capable of
roughening a stable Laplacian front in three (or more)
spatial dimensions. In two dimensions the roughness of
the interface diverges logarithmically with time and sub-
strate size. We compute the scaling form' for the inter-
face width and compare it to simulation data.

Our analysis is readily extended to DLE with a spatial
bias perpendicular to the interface. Clearly, for a strong
attractive bias towards the interface the model reduces
to ballistic deposition' which is well represented by the
local theory. ' We show that even a weak bias dominates
on large length scales, leading to algebraic roughness in
two and three dimensions, and predict crossover scales
and scaling functions. In contrast, a repulsive bias im-
plies bounded fluctuations in all dimensions.

Two-dimensional DLE has been studied previously as
a model for viscous fluid displacement in porous media,
in the limit where the displaced fluid has zero viscosi-
ty. ' ' The role of the Laplacian field is then played by
the pressure in the displacing fluid. On short length
scales, or for slow displacement, capillary forces dom-
inate that are not included in the simple DLE model.
Provided such eff'ects can be lumped into an eA'ective in-
terfacial tension' we show that they lead to algebraic
roughness on short length scales, with the logarithmic
behavior reappearing asymptotically. The relevance of
these results to recent experiments' ' on fluid displace-
ment in two-dimensional porous media is discussed.
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We consider a d-dimensional system of linear exten-
sion L in the d —1 transverse coordinates xi~~

= (x i,
. . . ,xd —i), and of infinite extension in the xd direction.
On a somewhat coarse-grained scale the interface posi-
tion can be parametrized by a single-valued height func-
tion xd =h(xi~, t). The Laplacian field gati(x, t) satisfies
V &=0 for xd (h and vanishes for xd ) h. The field is

continuous at the interface. The normal interface veloci-

ty is proportional to the normal field gradient. This im-

plies

r)h/Bt = D [8&/r)xd Vpp' Viih ]

where, in the case of DLE, D is the particle diA'usion

coefTicient. A straightforward linear analysis ' shows

that a small periodic perturbation hq(t)e' "" superim-
posing a flat front h = Vt moving at velocity V & 0 de-

cays as e ', where

a(q) =Viqi.

Bh, (t)/itt = —c (q)h, (t)+ tl, (t) . (3)

The nonlocality of the problem is reflected by the fact
that cr(q) is a nonlocal operator in real space. The qq(t)
are Fourier components of Gaussian white noise in space
and time, with zero mean (tlq(t)) =0 and covariance

This dispersion relation has been verified in experiments
on electrolytic polishing of periodically modulated sur-
faces'" and also in simulations of DLE. ' In the
presence of randomness perturbations are constantly
generated. To model the noisy interface motion we add
a random force to the relaxational dynamics and ob-
tain a stochastic equation of motion for the Fourier com-
ponents of h (xi', t ),

tional to l~. If the interface evolves from a flat initial
state, it is rough on scales l ~ t' after a time t. The
general scaling form for the Fourier amplitudes is then
(ihq(t)i )-iqi +' ~g(iqi't). Comparing with (5)
the scaling exponents in the present case are identified as
(=(2 —d)/2 and z =1. We note that the result for ( is
shifted by one dimension (d d+1) with respect to an
equilibrium interface roughened by capillary waves.

For d=2, (=0 and the interface is logarithmically
rough. The quantity of interest is the rms interface
width g as a function of time and system size, ' which is
obtained by summing (5) over the L —

1 modes q= (2tr/L )n, n = L/2+—1, . . . ,
—I, 1, . . . , L/2 (L is tak-

en even). We find

((L,t)'= [ln(L/a) f(Vt/L—)], (6)
2zV

where a is a short-range (lattice) cutoff and f(x)= —ln(1 —e '"') is a universal scaling function. At
short times (t &&L/V) the width increases as g(t) ~

= (6/2trV)ln(4trVt/a) while in the stationary regime
(t)&L/V) it saturates at g (L) = (6/2trV)ln(L/a).

In Fig. 1 we compare the predicted scaling form (6) to
simulation results for DLE that span more than two de-
cades in system size. In the simulations time is mea-
sured in units of the average surface position, so V =1.
The noise amplitude h, = 1.2 was estimated from the data
for g (L ) obtained by Meakin and Deutch. To elimi-
nate the short-range cutoff we plot g

—
g as a function

of Ioglp(t/L). Apart from statistical fluctuations for
large L that are due to the small number of independent
runs, the agreement between theory and simulation is ex-
cellent.

In three dimensions the sum over the modes (5) is

&g, (t)g, (t )) =(~/L'- )~...S(t-t ). (4)

On dimensional grounds we may write 6 = Va„", where a,
is a length scale associated with the randomness.

Using the field p(x, t ) calculated from the linear
analysis we find that the second term on the right-hand
side of (I) leads to a nonlinearity —V(Vh) which is

known to be of crucial importance for local interface dy-
namics. ' Here simple power counting shows that such
a term is irrelevant compared to the nonlocal linear
term, ' and hence the linearization is justified. The non-

linearity becomes relevant in the presence of an attrac-
tive bias, as will be demonstrated belo~.

The linear equation (3) is trivially solvable. The solu-
tion appropriate for an initially flat interface [hq(0) =01
is
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A dynamically scale-invariant interface can be charac-
terized by two scaling exponents j and z, which describe,
respectively, static and dynamic scaling properties. '
For a rough interface the typical amplitude of transverse
excursions on a scale l parallel to the interface is propor-

FIG. 1. Numerical results (symbols) and theoretical scaling
function (solid curve) for the surface width in diA'usion-limited

erosion on the square lattice. The model is described in Ref. 9.
The numerical data were averaged over a number of indepen-
dent runs ranging from 4000 for L =32 to 20 for L =4096.
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for t ~. At finite times this behavior is limited to
length scales below a correlation length r, =2Vt, where a
more rapid decay —t /~r~ sets in.

Suppose now that the diftusing particles have a small
drift velocity u perpendicular to the interface. The La-
place equation in the region xd & h is then changed to
DV p

—u 8&/6xd =0 and a term up~„, =q is added to the
right-hand side of (1). Repeating the linear analysis "
we obtain the dispersion relation

o(q) = V[[q'+ (u/2D) '] '"—u/2DJ, (7)

which deviates from (2) for ~q~ && ~u~/D, corresponding
to length scales 1 &) l„=D/~u ~. For a repulsive bias
(u &0) o(q) V/1„ for q 0 which implies that the
logarithmic roughness in two dimensions is limited to
length scales 1&1„. For an attractive bias (u &0) the
dispersion relation is quadratic for small q, o (q)= Vl, q, corresponding to the local dift'usion operator
V h in real space. Compared to this term the nonlineari-
ty arising from the lateral motion in (1) may no longer
be neglected. ' Hence on length scales l » t'„ the inter-
face is described by a local equation of the type suggest-
ed by Kardar, Parisi, and Zhang (KPZ), '

ah/at =V[1„V'h+(Vh)']+g

For small drift, l„»a,a„ there is a substantial inter-
mediate scaling regime where the linear term in (8)
dominates and the scaling exponents take on the values

(p = (3 —d)/2 and zp =2 familiar from capillary-wave
theory and sedimentation processes. The crossover
scales can be estimated using known results' ' for the
KPZ equation.

In le dimensions the static correlations are not
aAected by the nonlinearity. ' Hence the crossover from
logarithmic [( —ln(L/a) 't

1 to algebraic [g -L 't ]
divergence of the stationary width can be computed
directly from the dispersion relation (7). The dynamic
exponent changes' from zo=2 to z = —', at a time scale
t, =1, /V with 1, —1„/a, . In three dimensions the log-
arithmic roughness associated with the static exponent
gp =0 becomes visible on length scales 1 & l,~' ~ —a
xexp(l„/a))&l„. On even larger scales 1& l,.

~ ~-a
xexp(l„/a„) the nonlinearity leads to algebraic rough-
ness with /=0. 4. Clearly, these giant length scales
are not expected to be observable for moderate drift ve-
locities. Finally, we note that in dimensions d & 3 a
phase transition occurs ' ' ' as a function of the dimen-

dominated by the short-range cutoA and the interface
width ( tends to a (nonuniversal) constant ( —dh/Va
as t, L ~. The negative roughness exponent /= ——,

'

shows up in the finite-size corrections to the width. We
find ( —( —1/t for Vt « L and g

—
g —1/L for

Vt »L. Moreover, the correlations in the interface posi-
tion have a power-law decay,

(h (x~~, t )h (x
~~
+ r, t ) ) —( Vt ) —

( r (
~ = I/~ r (

sionless coupling k —(a„/1, ) from a smooth phase at
small k to a rough phase with g & 0 at large X.

Next we turn to the corrections due to capillary forces
acting on a fluid interace in a porous medium. If the
displacing fIuid wets the medium, which is the case of ex-
perimental relevance, ' ' it has been suggested' that
the capillary pressure drop across the interface can be re-
lated to the interfacial curvature through an eAective
coarse-grained interfacial tension y*. Including the
effective tension in the linear stability analysis adds a
(positive) term proportional to ~q~ to the dispersion re-
lation (2). Computing the stationary roughness in two
dimensions we now obtain

(L) = [In(1+L /lc„. ) —ln(1+a /lc, )] (9)
h.

with a crossover length scale 1c„=2trdI~/Ca, where
Ca=tV/y* is the effective capillary number, p is the
viscosity of the displacing Quid, and K is the permeability
of the porous medium. For a(&L &&Ip,. a new scaling re-
gime with (=1 (g —L) appears, while on larger length
scales the logarithmic scaling (6) is recovered. In the
case of unstable displacement lg„. is the critical wave-
length for the onset of the instability.

The value of the eA'ective interfacial tension y* is un-
known in general. ' For a rough comparison with the
experiments of Rubio et al. ' we set y* equal to the mi-
croscopic (molecular) interfacial tension y. The cross-
over scale lp,. then turns out to fall within the range of
length scales used to estimate the roughness exponent g.
According to (9), this would imply a distinctly curved
log-log plot for g (L) and an efl'ective exponent that de-
creases systematically with increasing capillary number.
Instead (=0.73 is found independently of Ca. ' On the
other hand, a recent reanalysis of the data of Rubio et
al. ' does show a clear crossover behavior that is well
fitted by our formula (9) with y* = y and a„=39 in units
of the bead size. Although the agreement could be ac-
cidental, we do believe that the applicability of an
efrective interface tension' in this situation remains an
open question that should be systematically addressed in
future experiments.

In summary, we have described a novel universality
class of kinetic roughening with a large variety of physi-
cal applications. While the limiting case of purely La-
placian dynamics admits a simple analytic solution, the
crossover to other displacement mechanisms on large or
short length scales is quite complex and certainly merits
further theoretical and experimental work.
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