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Dirt Roughens Real Sandpiles
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It is shown that translational disorder in the interior bulk of real sandpiles is a relevant perturbation
on self-organized surface fluctuations. In two simplified models, this disorder destroys the flat phase of
the surface; surface fluctuations are instead described at long wavelengths for all parameter values by a
simple diffusion equation with noise, which implies a logarithmically rough surface in d=2. This result
suggests that real sandpiles may also be described by a simple diffusion equation, and proves that bulk
translational disorder is important for their surface fluctuations.

PACS numbers: 05.40.+j, 05.60.+w, 46.10.+z, 64.60.Ht

Recently, it has been suggested' that "sandpiles" may
exhibit self-organized criticality. These sandpiles are
dynamical systems consisting of aggregates of particles
(e.g., grains of sand) held up in a gravitational field by
the mutual contact friction between the particles. Parti-
cles are then repeatedly and randomly dropped onto the
sandpile, steepening its surface. As this happens,
avalanches occur with increasing rapidity, ultimately re-
moving particles from the surface at the same average
rate as they are being randomly deposited. This steady
state is believed to exhibit self-organized criticality.

Subsequent theoretical analyses have shown that for
a large class of simplified models of this system, a phase
transition occurs in d=2 between a "high-temperature, "
logarithmically rough phase characterized by diff'usive
(z=2) dynamical behavior, and a "low-temperature"
smooth phase with "superdiff'usive" (z (2) behavior.
Both phases display self-organized criticality with exact-
ly calculable exponents.

This paper argues that this phase transition, and the
low-temperature smooth phase, are artifacts of the impo-
sition, in both computer simulations' and analytic treat-
ments, of perfect translational order on the interior of
the sandpile, and that both disappear in a large class of
models which, like real sandpiles, lack translational or-
der in the bulk. Thus, real sandpiles will not be in the

universality class of the bulk translationally ordered
models previously studied.

It is not clear whether real sandpiles will be in the
universality class of the models studied here either, since
there are some potentially important diAerences between
the type of translational disorder in these models and
that actually present in real sandpiles. These results do,
however, demonstrate the importance of properly treat-
ing the eA'ects of bulk disorder on the surface, showing
that such eAects are "relevant" and can radically alter
the behavior of the surface, as they do for these models
by destroying an entire phase.

Furthermore, if the diAerences between the types of
disorder studied here and those in real sandpiles prove ir-
relevant, then the results obtained here will also apply to
real sandpiles.

The diff'erences between the models for sandpiles con-
sidered previously and the two models I will consider
here are illustrated in Fig. l. Figure 1(a) illustrates the
perfectly translationally ordered models treated theoreti-
cally and in simulations' to date. In these models, the
sandpile can be thought of as composed of a d-
dimensional array of columns of identical, perfectly
stacked cubes.

I treat two disordered versions of this model in this pa-
per. In the first, weakly disordered, which is illustrated
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FIG. l. (a) Illustration of the bulk-ordered models for sand-
piles previously studied. Perfect cubical grains are added atop
ordered columns of cubes, each in perfect registry with its
neighbors. (b) The weakly disordered model studied here.
Each column is still perfect, but now is displaced up or down

by a quenched random, independent amount d(r) =—ap(r)/2z.
(c) The strongly disordered model. The columns themselves
are no longer translationally ordered; the random vertical dis-
placement of each column can now vary along the column as
well.

along the column, as well as between columns, as illus-
trated in Fig. 1(c). The disorder is still treated as
quenched. This model is somewhat closer to the reality
of true sandpiles, although, being quenched, both models
still have the rather artificial feature that, if sand is re-
moved from a region by an avalanche and then subse-
quently replaced by later fluctuations, the new sand sits
in exactly the same (though disordered) positions as the
original sand. Despite this artificiality, these models still
demonstrate quite dramatically the importance of disor-
der.

I will begin by reviewing past work on the ordered
model Fig. 1(a). Clearly, in this model, the height h(r)
of the surface at any 2D lattice point r is an integral
multiple of the cube edge length a. The system evolves'
by adding blocks at random points on the surface (but
always squarely atop a column, see Fig. 1) and then al-
lowing blocks to hop down (along the direction of the
component of gravity parallel to the surface) if the
height of a column relative to those below it exceeds a
critical height h, . In the prototypal models, ' one waited
until all "avalanches" started by the addition of one ran-
dom block had ceased before adding another block. The
very intriguing self-organized criticality displayed by
these models has been the subject of a great deal of
study. A totally diff'erent, but more analytically tract-
able class of models continues adding blocks at a con-
stant average rate per unit area, even during avalanches.

The important features of this latter class of models
for determining the long-distance and long-time behavior
are the following: (1) the conservation law that the
deterministic part of the dynamics (the hopping) con-
serves the total number of grains, and hence fh (r, r )d r
=const in the absence of randomly added blocks; (2) the
translational symmetry h(r) h(r)+ma, m integer,
coming from the fact that all the grains are the same
size, and that the dynamics only depends on height
difference; (3) the fact that the random effects (the ad-
dition of grains) violate the conservation law (1).

A continuum dynamical model which embodies these
principles is

B,h =v 8 6+v 8 h+A. t) cos(Gh)+q,

where ri(r, t) is a Gaussian white noise with purely
short-ranged correlations,

in Fig. 1(b), the sandpile is still modeled by perfect
columns of perfect cubes, but with each column indepen-
dently shifted vertically by some random distance d(r)
uniformly distributed between zero and the cube length
a. Here d(r) is a quenched random variable, in the
sense that it does not evolve in time, and is totally
decorrelated with fluctuations of the interface height.

In the second, strongly disordered, model, d varies

and G =2xja.
The cosine term reAects the h 5+ma translational

symmetry, while the derivatives are required to satisfy
the conservation law, and terms like cl& cos[6~cos(Gh)]
are forbidden by r& —r~ symmetry. Here II (i)
means parallel (orthogonal) to the projection of gravity

g onto the mean plane (r) of the surface. The properties
of the dynamical model Eq. (1) are discussed else-
where. ' Its extension to include the types of disorder il-
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lustrated in Figs. 1(b) and 1(c) is

e, l =.„aP~+..a.'I +~a„cos[G~+(t (r, h)]+ g, (3)

with the random noise g having the same statistics Eq.
(2) and p(r, h) a quenched random variable with statis-
tics (e""') =0

(ei(A(r, h) —y(0, 0)]) f (r/g)f (P /g ) (4)

In (4), f&(x) is short ranged, and falls off exponentially
for x)) 1. The behavior of f, distinguishes the two mod-

els:

1, weakly disordered model [Fig. 1(b)],
(z) =' 5

e ', strongly disordered model [Fig. 1(c)] .

I begin by treating the weakly disordered model, in

which p is a function only of r. My approach is to map
the stochastic'equation of motion (3) onto an equilibri-
um statistical-mechanics problem in d+1 dimensions.
The quenched disorder in this equilibrium problem is
then treated using the replica trick, which reduces the
problem to an ordered equilibrium model, which can
(finally) be treated directly by standard renormali-
zation-group techniques.

The mapping of the stochastic equation of motion (3)
onto an equilibrium model using the Martin-Siggia-Rose
formalism is straightforward. The result is that all
correlation functions of h are exactly those of a (d+1)-
dimensional equilibrium model with the Hamiltonian

H([n, h, &})=q d rdt( —,
' Dn (r, t)+iz(r, t)[B,Ii —

v~~8~~h
—v 8 h —)(B~~cos[Gh+y(r)]})+lnJ (([/i}),

where J([h}) is a Jacobian factor whose exact form will not be needed, zr(r, t) is a dummy field that is functionally iil-
tegrated over in calculating the partition function, and p(r) is also integrated over, but, unlike h and x, is independent
of time t.

The functional integral over p can now be performed perturbatively in the coupling & using the replica trick. Using
the earlier expressions for the correlations of e, and gradient expanding, I obtain, perturbatively

n

H, = Z „d"rd&[ & D~.'(r, t)+in, (r, t) [B,h, (r, t) —v~&~h, (r, t) —
v~~8~~ h, (r, t)]}a=]

+g g d rdtdt'6~~~+, (r, t)8~~~+(i(r, t')cos[G[h, (r, t) —hp(r, t')l} —lnJ([h, }),
a,P=]

(7)

where g—= 4 X fd rfi (~r~/(), and I have ignored all but
the leading-order term in the aforementioned gradient
expansion. Note that the coupling term in this expres-
sion (the term proportional to g) is infinitely long ranged
in time; this refIects the infinitely long-ranged temporal
correlations of the p fields, which are in turn a conse-
quence of the fact that the p field is quenched and hence
time independent. As always with the replica trick,
properties of the quenched model are derived from the
n 0 limit.

Renormalization-group recursion relations for the
Hamiltonian (7) can now be constructed perturbatively
in g, which is the models only relevant nonlinearity.
Note that there is no graphical renormalization of any of
the terms bilinear in x and h, since the g term remains
invariant under z —n, a symmetry which is lacked by
the bilinear terms. Furthermore, the only terms quadra-
tic in x, generated by the g term involve two B~~ deriva-
tives as well, since the g term does. These terms are ir-
relevant at long wavelengths relative to the Dz term al-
ready present. Thus, the parameters D, v~~, and v& are
renormalized only by scaling.

I will choose the renormalization-group rescalings
r~~ br~~, r& b r&, t b't, where the anisotropy ex-
ponent g and the dynamical exponent z will be chosen to
produce fixed points. In addition, the fields rescale ac-

~Kcording to x, b x and h, b "h,. Choosing to keep

dD
dl

=[(d—1)g+z+ I+2K, ]D,

dv~i

dl
= (z —2) vii,

dv~

dl
= (z —2g) v~,

d6 = —b.+ (d —I )g+1]G,
dl

(1O)

dg
dl
g =(. 2 rC, T)g+C(n— 2—)g'+O(g'), —(12)

where I have defined T:DG /(v~~v~) ', C is a p—ositive
constant of order unity, and Ed is the surface area of a
d-dimensional sphere divided by (2x) . Note that the
first three of these recursion relations are exact by virtue
of the arguments just given, while that for 6 is also exact
since 6 is likewise graphically unrenormalized, by

l
the coefficient of x,&,h, in H fixed at unity leads to the
requirement kq = —[k +(d —l)(+1], which is exact
since x tl, h„ like all the other relevant terms in the
quadratic part of H, suAers no graphical renormaliza-
tion.

The renormalization-group recursion relations are
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translation invariance [h(r, t)- h(r, t)+a].
In order for the first three recursion relations (for v~~,

v&, and D) to have a fixed point, we must choose z =2,
/=1, and X,= —(1+ —,

' d). Using these values and tak-
ing the limit of interest n 0 in the recursion relations
for 6 and g leads to

dT =(2 d) T—,
dl

where T is defined as before. The first term on the
right-hand side of (16) arises from the changes in G'

upon rescaling.
Defining V(y) =f— (dG/2tr)e' ~V(G), (16) can be

rewritten as

BV(y) B V+ 2 —d B

Bl B 2 2 By

dl
= —Kd Tg —2cg (14)

whose solution is

+ OO

dG' V(G') g„d rdtdt'Bitt (r, t)Bitrp(r', t)
a,P

where

x cos {G'[h,(r, t ) —hp(r, t') ]j, (15)

Since C& 0, in all dimensions d, g renormalizes to
zero in the long-wavelength (1~ ~) limit, and we recov-
er a simple isotropic diAusion equation.

Now consider the second, strongly disordered, model
[Fig. 1(c)] in which the quenched phase p depends on h

as well as r. This model can be mapped onto an
equivalent statistical-mechanics problem and replicated
in exactly the same way as the weakly disordered model.
The first difference appears when the quenched averages
over p are evaluated perturbatively in X. Now we have
an anharmonic term in the replicated Hamiltonian of the
form

V(y 1)=e' y y ' exp —y~" d 'V( ', 1=0)
J2rrt (1)

, (18)

where I have defined t (1)=D(e ' —I)/e and e=—(2 —d)/
2. From (18) it is straightforward to show that for all d,
and for arbitrary initial V(y, 1=0), V(y, l ~) vanishes

up to an irrelevant constant for all y. Thus, the random
potential term vanishes, and one is left, again, with pure-
ly diA'usive behavior for the sandpile surface.

I thank Geoff Grinstein and Dung-Hai Lee for teach-
ing me most of what I know about sandpiles, and
Mehran Kardar for teaching me the rest. I am also
grateful to the IBM Almaden Research Center for its
hospitality while this work was being completed.

V(G') =—g„cos(G'y)cos(Gy) f, (y/g, )dy

and g is the same as in the weakly disordered case. This
model is clearly a linear superposition of (an infinite
number of) terms each of which has exactly the same
form as in the weakly disordered case. Therefore, all of
the arguments about the exactitude of the recursion rela-
tions for D, v~~, and v& go through exactly as before. In
addition, the recursion relations for each V(G') can be
read off to linear order in V(G') from the recursion rela-
tions for g and 6 derived in the weakly disordered case:

BV(G') d, BV(G') &d T
Bl 2 BG'

(16)
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