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The transition from the dangerous cardiac arrhythmia, ventricular tachycardia, to the fatal cardiac ar-
rhythmia, ventricular fibrillation, is believed to be associated with the breakup of spiral waves of excita-
tion into multiple reentrant waves. A new computational method for wave propagation in discrete excit-
able media employing coupled maps with continuous time is used to derive analytical criteria for param-
eter ranges in which spiral waves show a stationary rotation, wandering, and breakup into multiple

spirals.

PACS numbers: 87.10.+¢, 05.45.+b, 87.22.As

Spiral waves of excitation of the ventricular muscle
have been identified as one mechanism underlying ven-
tricular tachycardia, a dangerous cardiac arrhythmia as-
sociated with a rapid heart beat.'? Ventricular tachy-
cardia is liable to “degenerate” into ventricular fibrilla-
tion, a fatal cardiac arrhythmia. Experimental studies
mapping the spread of excitation in the myocardium
have identified this transition with the breakup of a
spiral wave into multiple reentrant waves propagating in
complex and changing pathways.!? Previous studies
have modeled wave propagation in the heart by using
nonlinear partial differential equations3=® and cellular
automata.””® Both of these classes of models have defi-
ciencies, since neither captures the spatially discrete,
temporally continuous properties of biological tissue. In
pathological conditions, the propagation speed of cardiac
excitation is reduced, and the cellular myocardium may
not be well described by a continuous partial differential
equation.'® These considerations have led us to formu-
late a novel theoretical model, consisting of coupled
maps in continuous time, to study the spread of excita-
tion in discrete cellular media.!" The theoretical model
facilitates numerical and analytical computations con-
cerning wave propagation in excitable media, and allows
an explicit computation of stability criteria for rotating
spiral waves.

The system is composed of many excitable elements
(cells) with an identical property.'? Each cell is connect-
ed to some number of neighboring cells by a conducting
cable. The cell can be excited by an incoming pulse
from exciting neighboring cells. When a cell gets excit-
ed, the cell emits an excitation pulse which conducts
through the conducting cable. We assume that the con-
duction time between the neighboring cells, 7, is given by

t=f(T) ={aexp(—=T/B)+ 41, if T=0, 4]

where a, B, and y are the parameters, / is the distance
between the neighboring cells, 6 is the refractory time,
and T is the recovery time of the cell from the last exci-
tation. Such a relationship is called a recovery curve in
cardiac physiology'? and the functional form in Eq. (1)

is often used for the fitting of experimentally measured
recovery curves in cardiac physiology.'* This curve re-
flects slow conduction velocity for short recovery times,
but the ionic mechanisms underling this phenomenon are
not well understood. The excitation pulse propagates to
every neighboring cell with the same conduction velocity.
After a cell is excited, it must spend a constant duration
0 to recover its excitability. The next excitation will be
induced by the earliest arriving pulse after the refractory
period. '’

At first we consider the simplest case, the circulation
of an excitation pulse in a one-dimensional ring of N
cells, each of which is connected to two neighboring
cells.'® We assume a homogeneous spacing / between
the neighbors. Each cell has a map which gives a con-
duction time from that cell to its neighbors based on the
recovery time. In the ring, the recovery time is equal to
the circulation period of the excitation pulse which is
given by the sum of the conduction times for each cell.
Thus the dynamics of the circulating pulse on the ring is
described by N coupled maps. The solution of

t=f(N7)! 2

corresponds to a unidirectional circulation of the excita-
tion pulse (reentry) with a period T9=Nt. The conduc-
tion time between the neighboring cells 7 is the same for
all cells. This solution corresponds to a fixed point in the
N-dimensional map. There are three criteria that must
be satisfied in order for this solution to represent a stable
circulating pulse.

(1) Linear stability.— Linear stability analysis of the
N-dimensional map shows that the solution of Eq. (2) is
a stable attractor provided

ld[(T)

a7 > —1. 3)

T=Nr

Otherwise, the circulation period begins to oscillate with
an exponential growth of its amplitude, and finally the
circulation is blocked.

(2) Reentry.— The circulation period must be greater
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FIG. 1. Evolution of a stable spiral wave for a=3000,
B=40 in 50x50 cells. Excited cells at (a) =0 and (b)
t =20000 are represented by dots. (c) Magnified view of suc-
cessive motions of tip and arm. One revolution of the spiral
wave in (b) takes about 3 s on a DEC station 2100.

than the refractory time so that
Nt=206. 4)

(3) Unidirectional circulation.— The excitation pulse
must be blocked by the refractory duration in the direc-
tion opposite to its propagation direction so that

271<9. (5)

We now consider the spread of excitation in two di-
mensions. In a two-dimensional system, we assume that
each cell on a square lattice with a lattice constant / is
connected to its four nearest neighbors. We take no-flux
boundary conditions, that is, the cells on the boundary
are connected to only the inside cells. In the following,
we assume /=1, y=2, and 6=140 and consider the
effects of varying @ and . We found that for some pa-
rameters, the system has an attractor which is a station-
ary rotating spiral wave with a constant rotation period
To. The evolution of a stable spiral wave is shown in
Figs. 1(a) and 1(b) for a =3000 and 8=40. The simu-
lation starts from the initial condition of a broken wave
line propagating downward [Fig. 1(a)], where all cells
have spent the same recovery time, 200, and are excit-
able except those just behind the wave line which have a
recovery time 0. After a transient, there is a stationary
rotating spiral wave as in Fig. 1(b). The successive
motions of the tip are schematically depicted in Fig.
1(c). Here, the tip traverses a closed rectangular ring of
six cells. The motion of the tip is the same as the uni-
directional circulation with a constant conduction veloci-
ty in the one-dimensional case with V=6. Therefore the
rotation period of the spiral To=N7 is given by the solu-
tion of Eq. (2) with N=6. Figure 2(a) shows that the
time interval between the successive excitations at the
cell in the center of the square gradually converges to the
rotation period of the spiral, T'.

These results can be understood by considering analyt-
ical criteria for stable reentrant motions of the spiral
tips. Figure 3 shows a summary of these calculations
with /=1, y=2, and 6=140 as a function of a and S.
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FIG. 2. Time intervals between the successive excitations at
the cell in the center of the square as a function of time: (a)
a=3000, =40 (see Fig. 1); (b) a=6300, =40 (see Fig. 4).
Scales of the abscissa are different in the two graphs.

Different stable spiral waves are classified by the number
of cells, NV, in the trace of the tip (N = 4, even integer).
The stable regions for the stationary rotating spiral
waves with N=4,6,8 are shown by different hatchings.
Every stable region is determined by three different
boundaries determined by three conditions, the first two
of which are identical to those obtained for excitation in
a one-dimensional system.

(1) Linear stability (solid lines in Fig. 3).— For each
N, the spiral wave is linearly stable below the boundary
found by Eq. (3) and is unstable above it.

(2) Reentry (dashed lines).— For each value of N, Eq.
(4) is satisfied above the boundary.

(3) Premature reentry (dot-dashed lines).— The third
criterion in the one-dimensional system must be
modified. In the two-dimensional system, as shown in
Fig. 1(c) by a dashed line, some cells in the trace of the
tip are connected to the cells on the opposite side of the
ring as well as the cells in both sides. Stationary circula-
tion is possible only if the conduction of the pulse to the
cell on the opposite side is blocked by the refractory
duration. Otherwise, the tip reenters into the opposite

FIG. 3. Phase diagram for spiral waves with / =1, y=2, and
6=140 as a function of a and B. Stable regions for stationary
rotation with N =4,6,8 are shown by different hatchings. See
text for details.
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side prematurely. For example, in Fig. 1(c), when cell 5
receives the excitation pulse from cell 2, it has a recovery
time of 47 which must be less than the refractory time.
In general, a spiral wave whose tip passes through N
cells must satisfy

(N—2)r<0, (6)

to avoid premature reentry. For each N, this condition is
satisfied below the boundary.

The above results help in the study of the dynamics in
parameter space. The spiral with V=6 in Fig. 1 falls at
point A4 in Fig. 3 in the stable region of V=6 spirals. At
point C in Fig. 3 (¢=6000, #=30), we can find both
N=6 and N =38 spirals, depending on the initial condi-
tions, also in accord with the theory. We now consider
the dynamics at point B (¢ =6300, 8 =40) just above the
boundary of premature reentry for N =6 spirals, where
the system has no attractor of a stable rotating spiral
wave. Figures 4(a)-4(f) show the evolution of the exci-
tation waves starting from the same initial condition as
Fig. 1(a). At first a single spiral wave appears [Fig.
4(a)]l. However, the single spiral is unstable to breakup
by a disconnection of the tip from the tail [Fig. 4(b)].
The disconnected tip evolves into a pair of counter-
rotating spiral waves [Fig. 4(c)], following escape of the
original spiral from the finite two-dimensional space.
Such a breakup keeps proceeding at each spiral tip, and
finally there coexist many spiral waves [Figs. 4(d)-4(f)].
As seen in Fig. 2(b), the time interval of the successive
excitations at a single cell shows an irregular time depen-
dence and the cell sometimes has a short recovery time
because of premature reentry. It was also found numeri-
cally that the lifetime of the single spiral is prolonged as
a is increased with §=40. For a larger a (~20000) the
single spiral has a longer lifetime, but wanders around
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FIG. 4. Evolution of unstable spiral wave and breakup of
spirals for a =6300, 8 =40 in 50% 50 cells from the initial con-
dition in Fig. 1(a). Cells which are excited within the interval
(z,1 +50) are represented by dots at (a) 1 =5000, (b) 8200, (c)
30000, (d) 50000, (e) 200000, and (f) 400000, respectively.

the system in quite an irregular way. In any case the
motion is always transient and never enters into any in-
variant structure. The only invariant set in this dynami-
cal system under these parameters is the complete die
out of the excitation over the whole system. However,
numerical simulations show that the single spiral evolves
to this invariant set only when its tip escapes from the
finite two-dimensional system by chance after a long
wandering duration. We performed numerical simula-
tions with @ =6300, 8 =40 to determine if the irregular
motion is sensitive to initial conditions. From initial con-
ditions in which cells have a recovery time different
slightly (—~10~3) from that of the previous initial ar-
rangements in Fig. 1(a), after a short time (~ 3000), the
tip shows a motion different macroscopically from that
of the previous simulation. The motion of the tip is sen-
sitive to the initial condition. Premature reentry leads to
apparent chaotic motion of the tip and this results in an
irregular wandering motion of the spiral. The motion of
the tail is relatively simple and regular in any case.
However, we have not developed a detailed theory of the
spiral breakup.'’

The phenomena discussed here are not artifacts of the
regular lattice. We confirmed this by the simulation on
a random lattice where the position of each cell is Gauss-
ian distributed around the regular lattice with a standard
deviation of 0.05. Even in such a case, the system can
have a stationary rotating spiral with a constant period
over some parameter ranges. Although the period of the
successive excitation is synchronized over the whole
space, the timings of the excitation are distributed. The
system also shows spiral breakup and wandering of
spirals.

The breakup reported here appears to depend on the
discrete cellular nature of the excitable medium. The
stability boundaries in Fig. 3 depend on the spacing of
the cells. As known from the basic equation (1), the sys-
tem with a cell spacing / under the parameters (a,3,7,0)
shows the identical property as that with a unit-cell spac-
ing under the scaled parameters (al,B,y/,6). Thus, if
one halves the spacing of the cells for the same parame-
ters used in Fig. 4, spiral breakup is no longer found with
a=6300, but rather there is a stable spiral. Now spiral
breakup appears in the region a > 13 000.

Spiral breakup has also been found in cellular automa-
ta® and nonlinear partial differential equations'® model-
ing the heart. However, the connections between these
earlier observations, the current computations, and the
spiral breakup that has been experimentally observed '+
are not yet clear. If the same mechanisms for spiral-
wave instability described here also hold in the intact
heart, then we would expect to find a steep increase of
the conduction time for small recovery times for physio-
logical conditions in which spiral breakup occurs. Since
all computational approximation schemes studied to date
employ spatial discretization, it will be of interest to clar-
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ify if spiral breakup can occur in continuous systems
such as excitable chemical media.!® The current paper
underscores the relevance of spiral breakup to human
health, and the possibility that a theoretical understand-
ing of this phenomenon might be possible.
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