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We argue that for a pinned 2D electron lattice in a magnetic field thermally activated bound disloca-
tion pairs contribute to the conductivity from which an activation energy E4, can be deduced. Near the
melting point, this activation energy E,, approaches zero as E4, =Eo(1 — v/vo), where v is the filling fac-
tor. We calculate Eo from the change in the zero-point energy of the phonons as a dislocation pair is
created and find agreement to within 30% with the experimental result of Willet ez al.

PACS numbers: 73.50.Jt, 73.20.Dx

Recently, there has been much interest in the proper-
ties of 2D electrons in GaAs heterojunctions in an exter-
nal magnetic field in the low-density limit where the
transition to a solid with long-range order is expected to
occur. Willett ez al.! found that the conductivity is ac-
tivated in character and that the activation energy Ey,
depends on the filling factor v as Eo(1 —v/vy). They
propose that this type of behavior is related to the solid
transition. Andrei et al.? observed anomalies in long-
wavelength absorption around the same filling factor.
Jiang et al.3 observed reentrant melting behavior close to
a filling factor of +. Goldman ez al.* and Andrei et al.’
also observed nonlinear conductivity similar to charge-
density-wave systems in the low-filling-factor phase.

On the theoretical side, motivated by work on the 2D
dislocation-mediated finite-temperature classical melt-
ing,®’ Chui and Esfarjani recently® calculated the
change in zero-point energy of the phonons as a single
dislocation is created. They found that the elastic energy
and this quantum correction are both of the order of log
of the area of the system; the sum of these two becomes
zero very close to the experimental and simulation solid-
liquid transition point for the 2D electron gas (2DEG)
with® and without an external magnetic field and suggest
a mechanism of melting due to the creation of disloca-
tions. Energetics of the solid-Laughlin-fluid transition
have also been calculated by Lam and Girvin'® with im-
provement given by Esfarjani and Chui. '

In the solid phase dislocations occur as bound pairs at
finite temperatures but they can affect the physical prop-
erties of the system close to the melting point. In this
paper we investigate the effect of these bound dislocation
pairs on the finite-temperature transport of the 2D elec-
tron solid. In the presence of impurities an electron lat-
tice will most likely be pinned.'>!3 At a finite tempera-
ture dislocation pairs will be thermally activated and will
not be pinned by impurities. We found that it is not
necessary for the dislocation pairs to become unbound to
carry a current and provide for a conductivity that is
thermally activated in character. Near the melting fil-
ling factor at low temperatures, we calculated the change
in zero-point energy of the phonons as a bound disloca-

tion pair is created and found the activation energy
E4p =0.048¢%(1 —v/0.2)/ea+2E,, where E. is the core
energy of the dislocation. For the three densities investi-
gated by Willet ez al. the dependence on the filling fac-
tor, Eo/vy, is equal to 0.24e%/ea and is in good agree-
ment with the experiment of Willet ez al. given in Table
I. This result provides support that defects play an im-
portant part in the fundamental mechanism of quantum
melting in two dimensions.

In 2D, a solid will be pinned at zero temperature.
This comes about because the solid tends to form do-
mains of size Lo so that the energy gained from the pin-
ning potential L4’? more than outweighs the elastic ener-
gy expanded which is of the order of L§ 2 '>!3 In 2D,
at a finite temperature, it is possible that a solid can be
depinned.'® Here, we shall assume that the temperature
is low enough that this does not happen.

One might have thought that dislocation pairs need to
be unbound to carry a current. This is not so. Corre-
sponding to any finite displacement of a dislocation pair,
there is a net total displacement of the electrons. A
dislocation situated at the origin with the Burgers vector
along the x direction creates a long-range static displace-
ment of the lattice positions given by

uy(r) =altan ~'(y/x) +xp/r21/2x,
ax*/r?
2r

for a system with zero Poisson ratio in 2D. A bound pair
implies that two dislocations with opposite Burgers vec-
tor move by the same amount. Thus we consider a dislo-

u(r)=—

TABLE 1. The theoretical and experimental slope E o/ vo, the
experimental estimate for the core energy; the experimental in-
tercept vo for three samples with densities p.

Eo/vo(theor) (e?/ea) 0.24

Eo/volexpt) (e?/ea) 0.21 0.23 0.32
E.(expt) (e*/ea) 0.021 0.019 0.017
Vo 0.3 0.274 0.253
p (10" cm ~2) 3 4 4.5
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cation pair located at c,c’ and move them by the same
amount ér. Corresponding to the motion of the disloca-
tion pair, the associated motion of an electron at position
r is su(r)=6r-Vlu(r—c) —ul(r—c')l. The net move-
ment of the electrons is s=fd?r du(r)/a., where a. is
the area per unit particle of the lattice. We evaluate this
explicitly and show that it is nonzero. In the integral,
the dominant contribution comes from those r>>c¢,c’, we
get

Sk =Z§r,<fd2r(c—c')-va,<uk/ac.

The 2D integral can be done by converting it to a surface
integral

Sk =Z§r,»frd9(c—c')-ra,-uk/rac.

It is obvious that this quantity is nonzero. For example,
if one writes sy =6&r ryx +8ryryy, then ro =bl(c, —¢;)/
4+ (cx —c4)/81/a.. Thus it is not necessary for the
dislocations to unbind to carry a finite current. Physical-
ly, a bound dislocation pair create a nonuniform density
distribution of the particles which are now charged.
Thus when the pair moves the nonuniform charge distri-
bution will move with it and current is created.

To investigate whether dislocations are pinned or not,
we asked whether in moving the dislocation pair the en-
ergy gained from the external field can be compensated
for by the loss from the impurity potential. If the energy
gained from the external field is larger, the dislocations
are not pinned. We show below that the energy change
in moving the dislocations by any distance is finite when
the external field is absent. Thus provided the distance
moved is large enough, the energy gained from the exter-
nal field will always be larger.

The energy change AE; in moving the dislocation pair
by a distance d is equal to

[ a2qc =g, lexpligd) —11U(g)

where U(q) is the Fourier transform of the impurity po-
tential. We shall assume a random distribution of the
impurities R; in a spacer layer at a distance / from the
2DEG plane as in most experimental samples. Then
U,=ZXvsexpligR;), where v,=exp(—ql)2n/q. The
average of AE; is zero. Its root mean squared is equal to

[ a2q216 g (Vu),12leos(gd) — 1107

Because (Vu), is inversely proportional to g, the above
integral is finite for all values of d. Thus proving our as-
sertion. We next discuss the calculation of the depen-
dence of the energy of the dislocation pair on the filling
factor.

First, a clarification of the effect of magnetic field on
dislocations. The displacement field u of a dislocation is
determined by the condition that 2/VV(R;;+u;;) =0 for

all j subjected to the constraint that the circulation of u
equals the Burgers vector. The strain energy is just the
change in the potential energy with and without ». The
effect of the magnetic field comes not in the potential en-
ergy but in the kinetic energy (p —eA/c)? with A =r
xB/2. There is no additional contribution to the disloca-
tion energy from the kinetic energy in the magnetic field
which can be expressed in terms of fluctuations from lo-
cal static positions with 4 =6rxB/2 after a gauge trans-
formation so that a phase factor iX;r; xR, B/2 is intro-
duced into the wave function.

Chui and Esfarjani discuss the energy of a single dislo-
cation but their calculation can be easily carried over for
dislocation pairs. Briefly, the change in the Hamiltonian
as the dislocation pair with total strain field u;; is created
is given by

8H =2 [u;;6ri;6r,;VVVV (r;;))1/4. (1)
ij

The first-order correction due to this term is zero. The
change in the zero-point energy of the phonons can be
obtained from second-order perturbation as

2 ilsH|0YP/(Eo—E)) .

AE is thus of the order of [[qu(g)]2. Writing u in terms
of its Fourier transform u,lexp(ige) —exp(igc')], it is
easy to see that this energy is of the order of In|c —¢'|.
We have performed numerical calculations using the
Ewald sum technique'® to deal with the long-range
Coulomb interaction V. The magnetophonon energy E;
and wave function first discussed by Chaplik'® and
simplified by Chui, Haken, and Ma'” was used. Finally,
we performed a thermal average over the possible sepa-
rations and orientation of c,c’. The dependences are
shown in Table I. Good agreement with experimental
results is found.

Chui and Esfarjani® considered the transition to the
fluid by considering generation of unbound dislocations;
they focus on terms that are of the order of InA4 and thus
need not worry about core energies. In the solid phase
dislocation occurs as pairs at a finite temperature, the
dislocations may not be very far apart; the core energy
may not be much smaller than the logarithmic terms.
Estimates from the experimental data suggest that the
core energies are of the order of 0.02 and quite small.

In our picture melting occurs when the energies of a
single dislocation are zero. For bound dislocation pairs
E4p=2E.+pa*(1—v/0.2)/2x. (u is the shear modu-
lus.) The y intercept of the activation energy occurs at
Eo=2E.+ua?/2x. From this we obtain estimates for
the core energy shown in Table I. Thus this experimen-
tal estimate of the core energy is indeed quite small.

This estimate of the core energy is much smaller than
the classical core energy of dislocations in the Coulomb
solid at zero magnetic field (0.11) calculated by Fisher,
Morf, and Halperin.18 However, two corrections come
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in to make the theoretical number much smaller.

The first correction comes from the quantum-me-
chanical hybridization of states with the dislocations sit-
uated at different positions within the unit cell of the lat-
tice. This correction is similar to the formation of a va-
cancy band in solid He as first discussed by Hether-
ington.'*2 We have performed a preliminary estimate
of this energy by ignoring the Peierls potential on the
dislocations and treating the interparticle potential in the
harmonic approximation. We found that this correction
is approximately —0.17e %/ea, indicating that this mech-
anism can provide for a substantial reduction of the clas-
sical core energy.

The core energy is dominated by the short-range in-
teraction between the electrons. Because of the finite ex-
tent of the wave function perpendicular to the planes,
their short-range interaction is less than the 1/r interac-
tion used by Fisher, Morf, and Halperin. For example,
if one approximates the electrons by rods of length b, the
Coulomb interaction between two rods a distance r apart
is given by

V(r)=2G—In{z/[0+z)"2+13 - 2+ 1)"2)/d ,

where z =r/b. At small distances, this potential is loga-
rithmic in character. If b is comparable to a, we expect
a substantial reduction in the core energy. According to
the Fang-Howard model?®' the length b depends on the
charge density as (ndep+p) —'/3, where ngep is the de-
pletion charge density. Since a =(0.866p) ~'/2, b/a be-
comes larger the higher the density. Thus this mecha-
nism produces a smaller core energy as the density be-
comes higher; consistent with the trend seen experimen-
tally. :
We have focused on dislocation pairs as one type of
defects that contribute to the conductivity because they
are intimately connected with melting. It is possible that
other types of defects with similar defect energies also
contribute to the conductivity.

In summary, we have calculated a quantum-
mechanical correction to the energy of a bound disloca-
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tion pair and found the ratio of this energy to the filling
factor agrees to within 30% with the corresponding ex-
perimental value for the activation energy measured in
transport measurements. Our interpretation provides a
direct link between the transport anomalies observed ex-
perimentally and its implication on the melting transi-
tion. It provides the first explicit evidence that defects
play a significant role on melting and are not just con-
venient intellectual artifacts.
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