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Localized Low-Frequency Vibrational Modes in a Simple Model Glass
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We examine the vibrational spectrum of a glass of soft spheres produced by quenching an equilibrated
liquid (produced via constant-energy molecular-dynamics simulation) to zero temperature. Normal-
mode analysis shows clearly the existence of (quasi)localized modes at the low-frequency end of the vi-
brational spectrum. The modes are found to be localized around atoms whose neighborhood structure
differs signficantly from the average glass environment. The effective masses of these modes range up-

wards from 10 atomic masses.

PACS numbers: 63.50.+x, 61.42.+h

At temperatures below 1 K, the properties of glasses
differ strongly from those of crystals of the same materi-
al. This difference can be described well in terms of
two-level states by the now standard tunneling model. '
However, in order to account for the anomalous behavior
of the same glassy materials at temperatures between 1
and 10 K, where one finds additional states coexisting
with the sound waves,’ this model must be extended.
Recent neutron-scattering experiments have shown these
additional states to be soft harmonic vibrations, localized
to about 10 or more atoms.* It is plausible to assume
that both the two-level states and these soft harmonic vi-
brations have a similar structural origin.

A theory exploiting this idea was developed by Kar-
pov, Klinger, and Ignat’ev.’ They describe both the
two-level systems and the harmonic vibrational states
states by soft anharmonic potentials for some effective
(reactive) coordinate. Fitting this model to the experi-
mental data for various glasses gives between 20 and 70
for the number of atoms participating in the vibration.®
Even though such models give a consistent interpretation
of the low-temperature experimental data, they do not
give an answer to the question as to the physical nature
of these tunneling or vibrating modes—neither can
present experimental techniques. A microscopic under-
standing of these soft modes could give some important
clues as to the physics of the glass transition.

In this paper, we present results of computer simula-
tions that clearly show the existence of localized low-
frequency vibrational modes in a simple soft-sphere
glass. The approach is similar to the study of Nagel,
Rahman, and Grest’ of vibrational localization in a
modified Lennard-Jones glass, except that they con-
cerned themselves only with the high-frequency modes.
Low-frequency localized vibrations were found in a
computer-generated model for amorphous silicon by
Biswas et al.,® but interpretation of the results is compli-
cated by their use of a different potential to calculate the
vibrational properties than was used to create the glass
structure.

The idea of disorder-induced localization of excita-
tions is most familiar from studies on electronic sys-
tems.’ Here, as the discover is increased, the states at
both the high- and low-energy ends of the density of
states become localized first, while those in the center
remain extended. For the case of phonons, however, true
localization in a disordered system occurs only for those
states at the high-frequency end of the normal-mode dis-
tribution, ' because in any elastic medium there are al-
ways extended acoustic modes at low frequency. Any
low-frequency localized mode would then hybridize with
these, destroying the strict local nature of the vibration.
However, these hybrid modes retain their localized char-
acter, e.g., with regard to scattering properties. Such
states are termed resonant or quasilocalized. These
low-frequency quasilocalized modes are very important
for the low-temperature properties.

The concepts of “localized” and *(quasi)localized” vi-
brations are well known in the phonon theory of defects
in crystals.!" The former denotes a vibration with a fre-
quency outside the continuum of lattice frequencies.
Such a vibration cannot couple to the lattice modes and
its eigenvector decays exponentially with distance. These
modes commonly occur either for very light impurities or
for defects that cause large lattice strains such as self-
interstitial atoms. In a glass, this type of vibration will
be found in the high-frequency tail of the normal-mode
spectrum. For low frequencies within the lattice contin-
uum, where the host density of states is very low, reso-
nant defect vibrations are possible. Such resonant modes
are similar to localized modes in the usual definition and
are often referred to as quasilocalized low-frequency
modes. Like true localized vibrations, the eigenvector of
such a mode is also localized to the defect and a few
neighbors, but generally not as strongly, and does not de-
cay exponentially.'? Evidence for the existence of such
resonant modes for self-interstitials in fcc metals was
found at low frequencies by Dederichs, Lehmann, and
Scholz,'? in addition to the usual high-frequency local-
ized modes.
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The amount of localization can be quantified in terms
of the normalized eigenvectors e;’ of the vibrational
states, where the index m runs over all atoms in the sam-
ple and a labels the Cartesian coordinate. The motion of
the mode is described by

ul’(1) =f (el /M}?, 1)

where M, is the mass of atom m and u!"(¢) is its dis-
placement. Without loss of generality, we assume atom
1 to have the largest displacement. Within the harmonic
approximation, the kinetic energy of the mode is then

Exin=1 2 M, [ul ()17 =5 [f(1)]?
m,a
=13 Ml )?, (2)
where the effective mass Mg is defined as

MeﬁsM./Z(ea‘)z. 3)

(Note that this definition of the effective mass is valid
for not-too-large systems, but requires slight modifica-
tion in the infinite-system limit.'?) For localized and
quasilocalized modes, Mg is small and system-size in-
dependent, whereas for extended modes, it scales with
the number of particles.

An alternative definition of localization often used is
the participation ratio

p={1v),; [Sterery?] } ; @

For extended modes, p is of order unity. For localized or
quasilocalized modes, it will scale inversely with the sys-
tem size.

The two definitions can be mapped exactly into each
other in only two extreme cases: Mgz=M;— p=1/N
and M.s=NM,— p=1. For the interesting intermedi-
ate cases, only approximate correspondences hold. For
self-interstitials in fcc metals, one finds for the low-
frequency localized modes that M.s=4 or 5 times M
and for the high-frequency ones about half that value.
The effective mass is sensitive to the defect-defect
interaction— two interstitials clustered together will raise
M. about a factor of 2. The effective mass for tunnel-
ing transitions of these defects was found to be similar to
the one for the low-frequency modes. '

In a glass with its large distortions, we expect to find
both types of localized vibrational modes. One cannot
expect to find isolated defectlike structures, but there
will always be strong interaction between such centers.
Correspondingly, we expect the single-defect effective
masses to be something like a lower limit of the ones in
glasses.

To test these ideas, we perform a computer simulation
for a system of soft spheres interacting with an inverse

sixth-power potential
u(r)=e(o/r)®. (5)

To simplify the computer simulation and normal-mode
analysis, the potential was cut off at r/o=3.0, and then
shifted by a polynomial, 4r*+ B, where 4 and B were
chosen so that the potential and the force are zero at the
cutoff. The inverse sixth-power potential was selected
because this model material possesses, in its bcc crystal
form, very soft shear modes, 15 and it was hoped that this
property would be reflected in a higher concentration of
low-frequency resonant modes in the glass. As evidence
of the universality of the phenomena discussed here, we
also found low-frequency resonant modes in one- and
two-component Lennard-Jones systems, but at such a
low concentration that the collection of reasonable statis-
tics would have been very difficult.

We produce our glass configurations by quenching a
well-equilibrated liquid configuration of 500 soft spheres
(1024 for the larger system) produced via constant-
energy molecular-dynamics (MD) simulation with cubic
periodic boundary conditions at a density po>=1.0 and
temperature k7/e = 0.54. This temperature is about 2.5
times the melting temperature at this density.'® The
liquid is first quenched within the MD simulation by ve-
locity rescaling to a reduced temperature of about 0.04,
less than half the glass transition temperature, which for
this density is about 0.09 (based on a preliminary exam-
ination of the diffusion constant). The system is then
quenched to zero temperature using a combination
steepest-descent-conjugate-gradient algorithm. In all,
thirty different 500-atom configurations and three 1024-
atom glass configurations were created in this way and
analyzed.
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FIG. 1. The configurationally averaged participation ratio
plotted as a function of frequency for both the 500-atom
(stars) and 1024-atom (circles) systems.
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For each glass configuration the force-constant matrix
(using periodic boundary conditions) was calculated and
diagonalized to yield the 3V (V=500 or 1024) normal-
mode frequencies and eigenvectors. The participation
ratio and effective mass for each mode were then calcu-

lated. These quantities were sorted by frequency into

bins of width 0.03 and averaged over all configurations
to yield a frequency profile. For the participation ratio,
this frequency profile is plotted in Fig. 1 for both the
500- and 1024-atom configuration sets. The error bars
were calculated by dividing the configurations into six
sets of five and calculating {p(v)) for each and the stan-
dard deviation in the remaining six averages. Despite
this coarse graining, this error estimate is still influenced
by the inherent scatter in p(v) and represents only a
conservative upper bound of the actual statistical error.
Except for a change in scale, the same plot for the
effective mass is nearly identical. The most obvious
feature of this plot is the dramatic drop of the participa-
tion ratio at both the high- and low-frequency ends of
the spectrum. The drop at the high end of the spectrum
is due to the usual high-frequency localized modes. We
argue that the low participation ratios at the low-
frequency end of the plot are due to the presence of reso-
nant or quasilocalized modes. One indicator of the local-
ized nature of these modes is that, for the very lowest
frequencies, the participation ratios for the 1024-atom
system are about a factor of 2 smaller than those for the
500-atom system, as is expected from Eq. (4).

In Fig. 2, we plot the configurationally averaged densi-
ty of states for this system along with the same quantity
with all modes (48 in all) subtracted out for which
pe =<0.25 (out of the thirty configurations only three
contained no such modes). This cutoff was arbitrarily
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FIG. 2. The configurationally averaged vibrational density
of states as a function of frequency for all modes (solid line)
and all modes (V=500) with p > 0.25 (dashed line). Inset:
An enlargement of the low-frequency tail of these curves.
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chosen to yield a clear distinction between localized and
nonlocalized modes; however, we have checked that the
qualitative features of our result do not change for
cutoffs in the range 0.15<p.=<0.35. For N =500,
pe=0.25 corresponds roughly to M.g=25. One sees

‘that these resonant modes make a significant contribu-

tion to the density of states at very low frequencies, and,
thus, would be expected to profoundly affect the low-
temperature behavior of the glass.

Some insight into the structural nature of these reso-
nant modes can be obtained by examining the two-
particle radial distribution function g(r). In Fig. 3, we
plot this function calculated by averaging over all avail-
able zero-temperature glass configurations. Also, for
each low-frequency resonant mode (p, < 0.25), the par-
ticle with the largest displacement was determined, and
g(r) calculated using this particle as the central atom.
Averaged over all the resonant modes, this quantity is
also plotted in Fig. 3. [The error bars were calculated as
for p(v).] From these plots, we can see that the
nearest-neighbor shell is more compressed and less dense
for the resonant-mode central atom than that for the
average particle. This first-shell particle deficiency in
the resonant g(r) is made up for by a small peak just
outside the first peak, after which the integrated particle
number (see the inset to Fig. 3) for the two displayed
distribution functions are nearly identical. The qualita-
tive nature of this difference is relatively insensitive to
the exact value of p. (0.15=< p. =<0.35) and is, there-
fore, a real effect—not just a statistical fluctuation.
Thus, the existence of these modes cannot be derived
from the average structural properties of the glass, as is

g(r)

FIG. 3. The configurationally averaged two-particle radial
distribution function g(r) measured for the full system (solid
line) and using as the central atom only those particles with
the largest displacement for some mode (N =500) with
p <0.25 (dashed line). Inset: The integrated form of this
quantity— the total radial particle number N(r).
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FIG. 4. The configurationally averaged structure factor for
our inverse sixth-power glass at zero temperature.

done, for example, in the effective-medium approxima-
tion. !’

To illustrate the glassy nature of our zero-temperature
sample and to aid comparison of this model glass to real
materials, we have also plotted (Fig. 4) the configura-
tionally averaged structure factor S(k) for our system.
This function was obtained by Fourier transforming the
g(r) using a method due to Verlet'® to correct errors due
to truncation of g(r).

Our investigation shows clearly the existence of local-
ized low-frequency modes in accordance with recent ex-
periments and theoretical conjectures. These low-
frequency modes are found in much lower concentrations
(10 73) than their high-frequency counterparts. As is to
be expected, their localization is also much weaker. The
most localized modes are found to have effective masses
of about 10 to 30 atomic masses. The frequencies of
these modes are well below 15 th of the maximum vibra-
tional frequency. The two-particle radial distribution
function g(r) for those atoms that maximally contribute
to the low-frequency localized modes indicates a
structural difference from that of the average glass: The
nearest-neighbor distance is reduced and about one atom
is pushed from the nearest-neighbor shell into the region

where the average g(r) has its first minimum. A more
detailed analysis of the structural origin of these modes
is under way.
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