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Potential Drops Supported by Ion-Density Cavities in the Dynamic
Response of a Plasma Diode to an Applied Field
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A new analytical model and numerical simulations are used to show that an ion-density cavity can
support large potential drops, extended over a distance related to the cavity width, for several electron
transit times. When the applied potential drop exceeds a critical value, which depends on the cavity
depth, the drop is instead concentrated in a cathode sheath. The existence regions for the two different
states in the parameter plane are found from the simulations and shown to agree with the regions pre-
dicted theoretically. The results are consistent with available experimental data.

PACS numbers: 52.35.Mw, 52.35.Nx

The significant mechanisms in the different processes
for double-layer formation are still unclear. Experi-
ments in a Q machine' and in a differentially pumped
triple-plasma machine? have shown that an applied step
voltage is supported either by a cathode sheath or by a
potential drop extending over many hundreds of Debye
lengths in the plasma. These two states exist for several
electron transit times, and a double layer forms on the
time scale of the subsequent ion motion. In the initial
state the density in the triple-plasma machine varied axi-
ally, forming an ion-density cavity, in contrast to the axi-
ally homogeneous plasma column in the Q machine. It
has been shown by numerical simulations with periodic
boundary conditions that plasma density cavities gen-
erated by a low-frequency wave can support applied po-
tential drops,® and these results were used to interpret
electric fields observed above the aurora.* Ion-density
cavities can also strongly modify the nonlinear evolution
of plasma oscillations. >

In this paper we present a new analytical model giving
explicitly the potential profiles over an ion-density cavity
in a diode when the cavity width is much larger than the
Debye length. Numerical simulations are also presented
which, in contrast to the periodic boundary conditions
used elsewhere,® have “electron-rich” boundary condi-
tions similar to those in the experiments and accordingly
allow the number density V¢ of the injected electrons to
be higher than the particle number density V| in the ini-
tial plasma. The shape of the cavity potential profiles is
found to be independent of Ny, which only controls the
sheath potential drops. States similar to the two differ-
ent experimental states have already been observed in
separate numerical simulations.>® As a new simulation
result we observe the transition between these two states
and find the existence regions of the states in the ap-
propriate parameter plane. These regions are also found
to agree with those obtained from the analytical model
proposed.

A one-dimensional “particle-in-cell” code’ is used.
The time step was (2w,.) ~' and the grid size Ap/4.

Here }»D=(kBTe/me)'/2/a)pe and wpe =(Ne%/m,ep) 2.
The maximum density was 10> particles per Debye
length. The electric potential ¢(x) and the applied po-
tential drop ¢, are measured in units of kzT,./e. lons
and electrons are injected symmetrically at the two
boundaries with half-Maxwellian velocity distributions
with a density No. We use the natural ion-to-electron
mass ratio (argon), and the simulations cover a few elec-
tron transit times (about 300w, '). For such short simu-
lation times the velocity distribution of the ions present
initially is of little significance, as was shown by several
runs with different velocity distributions. Here we as-
sume that the initial velocity distributions are Maxwelli-
an with the same temperatures as those of the particles
injected. The initial ion-density distribution n;,(x) is,
however, of great importance since it may give rise to an
electric field controlling the electron motion. We consid-
er a diode in the region 0 <x < L. As a suitable test
profile we use

nip(x) =N —ANcos*{n(x — $ L)/L} . (1)

The profile describes a symmetric cavity with a density
N, at the boundaries and with a relative depth of AN/
Ni. The initial potential profile was obtained by a pre-
simulation of a short-circuited diode (¢,=0) during 0
<t<ty. For t=0 we put n.(x)=n;(x) so that the
electric potential vanished everywhere. After twenty or
thirty plasma periods a self-consistent potential profile
was obtained with sheath potential drops approximately
given by the Boltzmann relation, (kzT,/e)In(2No/N ),
as shown in Fig. 1(a) for 1 =19. The density at each
boundary is 2Ny in this initial, symmetric state. In the
experimental plasmas there are also ion-density drops in
the sheaths. We have tested the significance of such
drops by adding ion-density profiles to (1) with a sharp
density increase over typically five Debye lengths where
the ion number density increased from N, to the value
2Ny at the boundaries. No significant changes of the po-
tential profiles in the plasma region were observed.
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FIG. 1. Simulated potential profiles at times given in wp. '.
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The zero level is at the left boundary. A voltage drop ¢, was applied

between the boundaries at £ = 25. (a) The initial profile (z =19) and profiles at later times which are averaged over 50w, " (9, =2,
AN/N,=0.3, No/N1=1.36). (b) Instantaneous profiles for the same parameters. (c) The steepening of the profile for large cavity
depths (¢, =10, AN/N,=0.83, No/N;=1.04). In (d), ¢, exceeds the critical voltage drop shown in Fig. 2 (¢, =5, AN/N,=0.3,

No/N1=1.36). The profiles in (c) and (d) are averages over 10w, .

For t =t, a potential drop was applied so that a linear
potential variation was superimposed on the initial pro-
file. In Figs. 1(a) and 1(b) examples are given of the
cavity potential profiles obtained. These remained ap-
proximately stationary during the whole simulation time
after an initial transient lasting for about a transit time.
Figure 1(c) shows that the cavity potential profile
steepens and resembles a double layer for large cavity
depths. When ¢, exceeds a certain critical value, ¢,
=041, which was found to be a function of only Ny/
(Ny—AN), the cavity potential drop disappears, and
most of the voltage is concentrated in a cathode sheath
[Fig. 1(d)]. As shown in Fig. 2, the critical voltage
drops inferred from the simulations agree very well with
the theoretical values of ¢,; derived below as the max-
imum values of ¢, that are consistent with a potential
minimum within the diode.

The evaluation of the cavity potential profiles present-
ed below is based on the following assumptions. The
electron distribution function is given by the steady-state
solution of the Vlasov equation on the assumption that ¢
decreases monotonically from the value ¢. at x =0 to a
minimum at x =x,, where we put ¢ =0 (in the diagrams
¢ — ¢. has been plotted), and then increases monotonical-

ly to ¢.+¢, at x =L. The ion motion is neglected during
the first few electron transit times, so that the ion density
is given by (1). The quasineutrality condition is then
used to calculate ¢(x). The electron distribution func-
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FIG. 2. The circles denote simulations giving voltage drops
concentrated in a cathode sheath and the crosses those giving
cavity potential drops and potential profiles with a minimum.
The solid line gives the maximum value of the applied voltage
consistent with the existence of a potential minimum according
to (6).
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FIG. 3. Profiles obtained for two different values of No/N,
showing that only the sheath potential drops change, whereas
the shape of the cavity potential profile remains the same
(¢, =10, AN/N,=0.83; thin lines, theory; heavy lines, simula-
tions). In the theoretical curves the sheath potential drops are
indicated by straight lines since (7) determines ¢(x) only in
the plasma region. Figure 4 shows the velocity distribution at
the point marked by the arrow.

tion f becomes
f=Noexp(—o¢,—o.+¢)F(v),
f=N()CXp(_¢C+¢)F(D), L‘|\/$<U<°°. (3)

Here v, =sgn(x —x0)(2kgT./m.) 12 and F(v) is a
Maxwellian velocity distribution, normalized to unity
when integrated over the interval 0 <uv < oo. Because of
the asymmetry introduced by the applied voltage ¢,, the
electron distribution function f is discontinuous for
v =v|\/$ which separates the two different contributions
to f from each of the boundaries. By integrating (2) and
(3) and rearranging the terms the electron number den-
sity is obtained as

n(¢) =noexp(p — ¢.){coth(¢,/2) £ erf\o} , 4)

—co<p<uvVvo, ()

where no=No{l —exp(—¢,)}. The upper sign gives the
density n,(¢) for x < xo and the lower sign n,(¢) for
x> xo. The error function is normalized to unity for
large values of its argument. n,(¢) increases monotoni-
cally. As can be shown by differentiation, n,(¢) de-
creases from n(0) to a minimum for ¢=¢, and in-
creases monotonically for ¢ > ¢,,. The condition for a
density minimum for ¢ =¢,, is given by

coth(9,/2) =erfo 2 +exp(— ¢, )/ (xpm) %, (5)

which determines ¢,, as a monotonically increasing func-
tion of ¢,. Equation (5) is used to eliminate coth(¢,/2)
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FIG. 4. Comparison between the theoretical electron veloci-
ty distribution (solid lines) and the simulated one (circles).
The parameters are the same as in Fig. 3 (No/N,=1.04), and
the position is x =87Ap. The velocity is given in units of
v, =(kgT./m.)'"?. The sampled velocity interval is 0.05¢, and
the space interval 2Ap.

in (4). Then, as a first condition for quasineutrality, we
require neutrality at the density minimum ¢ =¢,,, where
the ion number density is V; —AN from (1). This gives

(N]_AN)=n0€Xp(_¢c)/(”¢m)l/2’ (6)

which determines ¢, as a function of ¢,. It is convenient
to normalize n; and n; to the minimum density given by
the right-hand side of (6). Quasineutrality at any point
in the plasma region then requires

Nip (X)

m“ =exp(¢—¢m)

+ (29, ) Pexp(o) (erfo)> T erfe'?), (D)

where n;,(x) is given by (1). ¢(x) can now be evaluated
for any given value of AN/N, by specifying a value of ¢,,
corresponding to any desired value of ¢,. Equation (7)
also gives the potential levels ¢, and ¢, at the plasma-
sheath boundaries, and the sheath potential drops,
6. — ¢ and ¢+ ¢, — ¢, can be evaluated by determining
¢, from (6). A number of comparisons between profiles
obtained from the theory and the simulations show a
very good agreement also in the case when the cavity po-
tential profile is steep (AN/N;=0.83) so that it resem-
bles a double layer as shown in Fig. 3.

Equation (6) defines ¢. as a monotonically decreasing
function of ¢, for any fixed value of No/(N; —AN). For
6, =0, ¢. is given by the Boltzmann relation, In(2Ny/
N1), and the potential minimum coincides with the den-
sity minimum. When ¢, is increased, the potential
minimum moves towards the left boundary and ¢. de-
creases. Finally, ¢. vanishes for a value ¢, =¢,, and
then the potential minimum is at the left boundary. ¢,,
which is shown in Fig. 2, is the largest possible value of
¢, that is consistent with a potential minimum in the
diode. When AN/N,;— 1, (6) predicts arbitrary large
values of ¢,;. Further investigations including the Pois-
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FIG. 5. The parameters are the same as in Fig. 4 except
that an interaction region of 100Ap with a constant ion number
density /V; is added on the high potential side of the cavity.
The upper diagrams show instantaneous profiles and the lower
ones, averages over 10w,.'. The time-averaged cavity potential
drop remains the same as for the shorter system (Fig. 3). The
beam population is strongly dispersed at x =200Ap.

son equation are necessary to explore this limiting case.
The electron distribution functions simulated show a
good agreement with those given by (2) and (3) for the
diode lengths considered so far. However, as shown in
Fig. 4, a slight discrepancy between the beam distribu-
tions can be observed close to the right boundary where
the distribution is unstable. To get the first evidence of
modifications of the cavity potential profile due to
beam-plasma interaction, a longer system was con-
sidered. The initial ion number density n;, was given by

(1) in the interval 0 <x <100Ap and by a constant
value, nj, =Ny, in 100Ap < x <200Ap, thus allowing an
interaction region of 100A,. Propagating fluctuations
now develop, and the beam population is strongly
dispersed at x =200Ap. The relevant result for the work
presented here is that this interaction does not modify
the time-averaged cavity potential profile significantly, as
shown in Fig. 5.
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