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Octonionic Superstring Solitons
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An extended-soliton solution to the low-energy heterotic-field-theory equations of motion is construct-
ed from an eight-dimensional octonionic instanton. The soliton describes a string in ten-dimensional
Minkowski space, and preserves only one of the sixteen spacetime supersymmetries.

PACS numbers: 11.17.+y, 11.10.Kk

There have been many attempts over the years to in-
corporate the unique algebra of octonions into physics.
However, in most cases a clear physical framework has
been lacking. Superstring theory contains many hints of
an underlying octonionic structure, particularly in con-
nection with the important role of triality in SO(8). The
presence of the exceptional group E8 in the heterotic
string is also extremely suggestive. Additional hints
come from the presence of analogs of the Jordan algebra
in the operator product algebra of fermion vertex opera-
tors, ' as well as from a variety of other observations.

A further connection between strings and octonions is
provided by the existence of super Yang-Mills theories
and Green-Schwarz superstring actions in dimension
D =3,4,6, 10, with the number of transverse dimensions
(1,2,4,8) coinciding with the dimensions of the four
Hurwitz algebras, R, C, 0, and O. These four algebras
also correspond to the four Hopf fiberings of spheres,
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which also preserves at least one supersymmetry. This
means in ten dimensions that there is at least one posi-
tive-chirality Majorana-Weyl spinor e satisfying the
equations

the starting point for the construction of a supersym-
metric soliton string solution to the low-energy equations
of motion of the heterotic string whose structure is inti-
mately related to octonions. As in Refs. 8 and 9 we
search for a solution to lowest nontrivial order in a' of
the equations of motion that follow from the bosonic ac-
tion
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and are also intimately linked to the three parallelizable
spheres, S ', S, and S, which appear as the fibers in
these maps. The first three of these correspond physical-
ly to the kink in 1+1 dimensions, the Dirac monopole in

three dimensions, and the Yang-Mills instanton in four
dimensions. It seems likely that the fourth Hopf map
should also play an important role in physics. It is possi-
ble to use this last map to construct a Yang-Mills field
configuration in eight dimensions with gauge group
SO(8), although the physical interpretation of this solu-
tion is unclear since it has infinite action with the stan-
dard Yang-Mills action and is not a solution of the stan-
dard Yang-Mills equation of motion. Here we will use a
related eight-dimensional SO(7) Yang-Mills field config-
uration obeying a self-duality condition first proposed in
Ref. 5 and subsequently solved in Refs. 6 and 7 which is
a solution of the standard equation of motion.

In this paper we will show that this solution provides

whcl c thc generalized connection 0~ =NM +HM .
(Our notation follows that of Ref. 9 except for a change
in the sign of P.)

It is natural to search for a string solution invariant
under SO(8) rotations in the transverse space as well as
two-dimensional Poincare transformations along the
string. Singular solutions of this form preserving half of
the supersymmetries were given in Ref. 8 and it was ar-
gued that these solutions correspond to the solution of
the massless field equations outside a fundamental mac-
roscopic string. Our point of view here is different in

that we are searching for smooth solutions without
source terms which correspond to soliton solutions to
string theory. The possibility of such solutions arises as
a natural consequence of the duality conjecture made in

Ref. 9 relating strings and 5-branes.
The solution we will present makes use of features

peculiar to eight dimensions which we now discuss. Our
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notation will follow that of Refs. 5 and 10 for the most
part. Related results can also be found in Refs. 11 and
12. We start by picking definite commuting SO(8) spi-
nor g+ with I q-+ = ~ g+ normalized to g~ g+ =1.
We can then introduce a fourth-rank antisymmetric ten-
sor

We thus have

p "„rpqq~ =0. (i3)

Finally, following Ref. 5 we consider antisymmetric
tensors F„,obeying the relation
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which is self-dual or anti-self-dual depending on the
chirality of g:

mnpq ~ mnpqrstu1
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where henceforth p, v = 1. . . 8 (m, n = I. . . 8) are world
(tangent space) indices in the eight dimensions trans-
verse to the string. Multiplying both sides of the equa-
tion by c"+'~ we deduce that the possible eigenvalues are

1 l~+ 2~ 6 ~ (is)
There exists an explicit construction of the SO(8) gam-
ma matrices in terms of the octonion structure constants
c;jk defined by

e;ej = —6~+cjkek, i,j,k =1. . . 7, (6)

with e; the imaginary octonions. Using this construction
and an explicit choice for g w one finds
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Useful identities obeyed by the tensor c~" include the
following:

Choosing the eigenvalue X+ =
2 corresponds to setting

the 7 part of F„, to zero under the decomposition 28
21+7 of the adjoint of SO(8) under either SO(7)

subgroup and ensures that F„,r"' E SO(7) —.
Our strategy for constructing a solution preserving

precisely one supersymmetry and invariant under
SO(7) —is rather simple. We must construct an ansatz
so that the gauge field strength and generalized connec-
tion 0 are in a SO(7) — subgroup of the transverse
tangent space SO(8) and so that the dilatino variation
vanishes for e=ri ~ using (13). Then we want
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The first condition is satisfied by the choice
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The tensor c ~" transforms as one of the three 35 rep-
resentations of SO(8). Under the standard SO(7) sub-
group of SQ(8) defined by the embedding

The connection is then
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and the corresponding decomposition for SO(7) . In
our solution, which is invariant under SO(7) —rotations,
the singlet appearing in the decomposition of Sw will
correspond to the one unbroken supersymmetry.

The generators of SO(7) —,G ~", can be written as
linear combinations of SO(8) generators I "as

with 8~ the two spinor representations of SO(8), the
tensors c ~"pq have no invariant part. However, we can
utilize the fact that SO(8) has two other SO(7) sub-
groups, denoted by SO(7) —and related to the usual one
by triality under which c+nP does contain a singlet. This
is most easily seen using the decomposition for
SO(8) & SO(7) + with

496 (276, 1)EB (1,21)B (1,7) |B(24, 8) (i9)

under SO(32) D SO(24) SSO(7) +. For Es we choose
the SO(8)SSO(8) subgroup of SO(16)&Es and embed
SO(7) + in one of the SO(8) factors to obtain

This implies that the gravitino and dilatino terms in (3)
vanish for e =ti+. for any choice of p(xu).

In order to fully determine the solution it remains to
solve F„,= 2 c+ p Fpp and then to solve the Bianchi iden-
tity dH=(a'/30)TrFAF for H and p. Remarkably, the
equation for F„,has already been solved in the literature
for gauge group SO(7) embedded in the nonstandard
SO(7)+ subgroup of the SO(8) Euclidean rotation
group. In order to utilize the solution of Refs. 6 and 7
we first pick an SO(7) subgroup of SO(32) or EsSEs.
For SO(32) we choose the canonical SO(24)SSO(8)
subgroup of SU(32) and then choose a SO(7)+ sub-
group of SO(8) which gives the decomposition

Gmn pmn I-pq+' +' pq

with the projection operators P -+ given by
248 (28, 1) tb (1,21)S (1,7) S (8, , 8)

~(s+, I) e(s+, 7) e(s, s) (2o)
1P+ pq 4 (~(uqj + 6 ™uq) (i 2) under Es&SO(8) SSO(7)+. In either case we have
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TrF =30tr8F with Tr indicating the trace in the ad-
joint of SO(32) or Es and trs the trace in the 8 spinor of
SO(7).

The solution of Refs. 6 and 7 is then given by

+ 2 1 +
+p

(21)

with p an arbitrary scale size. The Bianchi identity then
gives
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Although the form of this solution is reminiscent of
SU(2) instantons in four dimensions, there are important
differences. In particular, the leading term at large r in

(21) is not pure gauge. As a result, the field strength
falls oA'only as 1/r and the solution. is not characterized
by an element of x7(G) with G =SO(32) or EsEs.

Although the metric is asymptotically flat, the slow
(l/r ) falloA' of the fields implies that the Arnowitt-
Deser-Misner expression for the mass per unit length of
this string diverges. As for, e.g. , axion strings in four di-
mensions, this divergent energy is an infrared phenom-
enon, and should not prevent the existence of a well-
behaved low-energy effective action governing the string
dynamics on scales large relative to its core size. In this
action the octonion string has zero thickness and acts as
a source for massless spacetime fields.

The construction of this action is a fascinating prob-
lem for future research, but we would like to make
several preliminary comments. The string world-sheet
action has one massless field for every zero mode of the
soliton solution. There are, of course, the usual eight
zero modes from broken translation invariance. Further-
more, since the solution is not rotationally invariant
there are seven rotational zero modes which parametrize
an SO(8)/SO(7)+ —S coset space. There are also zero
modes arising from gauge rotations and dilation of the
string core.

The existence of one unbroken spacetime supersym-
metry in the presence of the soliton implies that the
world-sheet action has (0, 1) supersymmetry. ' The fif-
teen broken supersymmetries lead to fifteen world-sheet
Goldstinos. The integral of TrF over the eight trans-
verse dimensions is nonzero for the soliton, which may
'imply the existence of additional world-sheet fermions
via the Atiyah-Singer index theorem. The nonvanishing
of this integral has an additional important consequence.
Anomaly cancellation requires the term fBAtrF to ap-
pear in the spacetime action. This implies that 8„,must
couple to the low-energy action for octonion strings (at
sub-leading order in the string loop expansion), and that
octonion strings carry the same type of axion charge as
fundamental strings. In addition, this octonion string ap-
pears to carry a tensor charge which can be measured by
embedding it in a 5-brane.

It is also of interest to understand the coupling of the

octonionic world sheet to spacetime fields. At the linear-
ized level, these "vertex operators" can be determined by
studying the dynamics of octonion strings in spacetime
backgrounds with weakly excited plane waves. One such
vertex operator must exist for every massless spacetime
field of heterotic string theory. This suggests, along with
the conjectures of Refs. 9 and 14, the possibility of a
direct relationship between octonion and fundamental
strings, as yet to be understood.

In this paper, we have only shown that the octonionic
soliton is a solution to leading order in a' or heterotic
string theory. However, in Ref. 15 low-energy super-
symmetry is used to argue that the leading-order het-
erotic soliton solution of Ref. 9 is the leading approxima-
tion to an exact solution of string theory. It would be of
interest to see if the arguments of Ref. 15 could also ap-
ply to the octonionic soliton.

It is clear that the solution presented here is a rather
unique object that circumvents much of the conventional
wisdom regarding the behavior of solitons in supersym-
metric theories. For example, it preserves only one-
sixteenth, rather than one-half, of the supersymmetries.
On general grounds, there should exist a Lorentz-co-
variant supersymmetric action which describes the oc-
tonion string propagating in ten dimensions. This action
might provide a starting point for an alternative quanti-
zation of superstring theory, although it is far from clear
whether or not the octonion string corresponds to one of
the known fundamental strings.

While this work was in progress, we received an in-
teresting and related paper by Duff and Lu' concerning
string soliton solutions of a proposed 5-brane effective
field theory that utilizes the instanton of Ref. 4.
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the A. P. Sloan Foundation.
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