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Quantum Motion in a Paul Trap
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Quasienergy eigenstates are constructed for a quantum harmonic oscillator with a periodic, time-

dependent "spring constant. " This is done by a sequence of canonical transformations. The wave func-
tion in the new variables is that of an ordinary oscillator.
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for each of the three rectangular coordinates. The
eff'ective spring constant is a periodic function of the
time, k(t+ r) =k(t). In the experiments,

k (t) =a +b cos(2trt/r), (2)

but our work will apply to any k(t) which is periodic
with period r. The Hamiltonian (I ) yields the equation
of motion

mq(t)+k(t)q(t) =O (3)

for the Heisenberg operator q(t). We shall show that
the quantum-mechanical problem may be solved entire-
ly in terms of a suitably defined classical solution f(t) to
Eq. (3). We shall construct quasienergy eigenstates
whose wave functions tlr„(q', t) are quasiperiodic; they
acquire an overall phase factor when the time is ad-
vanced by the period ~.

Let us first review the character of the two linearly in-

dependent classical solutions to the equation of motion
(3). Since the equation is periodic, an independent solu-
tion at time t+ ~ is a linear combination of the two solu-
tions at time t. Linear combinations of the two solutions
may be found which diagonalize this relationship. Thus
solutions f+(t) exist which o. bey f~(t+r) =X~f~ (t),
where X ~ are constants. We shall consider only the case
in which the classical motion is bounded for arbitrary
initial conditions. This imposes restrictions on the
functional form of k(t) and requires that ~X+( ~ 1

and ~A, —
~

~ 1. Since the Wronskian f+(t)f (t)—
f+(t)f (t) is time in—depend—ent, the constants obey

X+X—=1. In conjunction with the bounded-motion re-
quirement, this implies that ~A, +.

~

=1 and X+. =e —'.
We shall adopt the convention that the phase 0 is posi-
tive, 0&0, and denote the corresponding solution by
f(t), with

(4)

The Paul trap is a device which enables extraordinary
experiments to be performed. ' The trap provides an os-
cillating quadrupole potential with the resulting motion
of an ion described by a one-dimensional Hamiltonian of
the form

H=(1/2m)p + —,
' k(t)q

The other independent solution is the complex conjugate
f*(t). We shall write the Wronskian of these two solu-
tions as

H =H+U 'i
t

Here the partial time derivative acts only on the time
dependence of the parameters which appear in U(t), not
on the time-dependent operators that it contains. We
first perform a canonical transformation with

U) =expl ig(t)q '(t) l, —

where

(7)

This gives q =q, p=p —2gq. Writing the Hamiltonian
in terms of the new coordinates, using f= —kf and the
Wronskian (5), a little algebra shows that the new Ham-
iltonian (6) is given by

ISZ 2
H= '+~( + )+p pq qp (9)

The cross term involving 2t(t) in Eq. (9) is removed by a
final transformation U2. Noting that g = (m/4) (d/dt)
xln~f ~, Eq. (6) shows that this is done with

U2=exp[ —, i(pq+qp)ln~ft ]. (IO)

This is a scale transformation which defines the final set

f(t)f*(t) —f(t)f*(t) =2iW,

where 8' is real. We shall assume that 8' is positive,
8'& 0, which is the case for the Mathieu-function solu-
tion for the "spring constant" (2).

The quantum-mechanical problem may be solved by
making canonical transformations which are implement-
ed by unitary operators U, U =U '. We work in the
Heisenberg picture so that basis states and operators
are transformed according to (q', t~U(t) =(q', t~, q(t)
=U '(t)q(t)U(t), p(t) =U '(t)p(t)U(t). The form
of the time evolution i8(q', t~/t)t =(q', t~H is preserved if
the Hamiltonian in the new representation is given by
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of variables,

1 1Q=U2 'qU&= q= q,
lf I Ifl

To solve it, we define the phase p by

exp [2iy(t ) ] =f(t)/f *(t ) . (i6)

The Wronskian (5) shows that p = W/lf I
and thus the

solution of Eq. (15) is given by

P=U2 'i »=If lI =Ifl(J —2zq) (i 2) A(t) =exp[ —i[&(t) —P(tp)]]A(tp) . (i 7)

In terms of these operators

H=, P'(t)+ —, mW'Q'(t)
If(t) I' 2m

H=,[A "(t)A(t)+ —,
' ]. (14)

The equation of motion for the annihilation operator is

d . - . 8'
dt

A =i[H, A] = —i (Is)

Except for an overall, time-dependent factor, Eq. (13)
defines a simple-harmonic-oscillator Hamiltonian which
is resolved in terms of the annihilation operator
=JmW/2Q+iv'I/2mB'P and the creation operator A
These operators have the commutator [A,A ] =1 and
express

In view of Eqs. (4) and (16), p(t+ r) =p(t)+9, and so
the solution is quasiperiodic, A(t+ r) =e' A(t).

As in the ordinary harmonic oscillator, the ground
state Io) is defined by A Io) =0 with the unit norm condi-
tion (OIO) =1. The zero-point term involving the factor
of —, in the transformed Hamiltonian (14) is of no
consequence, and we shall omit it. This term contributes
an irrelevant overall phase to the quantum amplitudes.
With this omission, HIO) =0, and the ground state IO) is
time independent. Quasienergy eigenstates are then
built upon the ground state in the usual way,

In, tp& =(I/Jn!) [A (tp)] "Io&,

with the corresponding wave functions in the new Q rep-
resentation being given by

e., „(Q',t ) =(Q', t ln, tp) .

The Hermitian adjoint of the A(t) time evolution (17)
now yields

+., &, (Q', t) =exp[ —in[&(t) —P(tp)l](Q', tl(I/Jn!) [A (t)] "Io) . (2o)

Since the ground-state ket is time independent and the bra and operators appear at the same time, the matrix element
in Eq. (20) is time independent. Since A" and A obey the usual rules of the creation and annihilation operators of the
ordinary harmonic oscillator, this matrix element is just the familiar oscillator wave function involving Hermite polyno-
mials,

&Q', tl [A'(t)] "Io& =&Q'I (A') "Io) =
Jg 1 n) 2 "n!

' ]/4

H(J mWQ')e x(p— 2 mN Q' ) . (2i)

To transform back to the original variables, we first
note that since U2 performs the scale change Q =q/If l,
the states are related by

&Q', t
I
=&q', t I»«) =~If«) I&q' = lf«) IQ', t

I

L The states In, tp) are quasienergy eigenstates in the sense
that the wave functions acquire only an altered phase
when the time is advanced by a period T:. To bring this
out, we define

It follows directly from Eq. (7) that

&q', t I
=&q', tl Ul(t) =exp[ —ig(t)q'](q', t I . (23)

tp = 0/r, E„=nto, (26)

Hence the wave functions in the original and trans-
formed coordinates are related by

and write

"P,, &, (q, t), (27)

y„„(q',t+ r) =e '"'y„,,(q', t) . (2s)

~. .(q'. t) = +., .(q'/lf «) l, t) lf«) I

x exp[i@(t)q'] .

The functions If(t)l and g(t) are strictly periodic; they
are not changed when the time is advanced by a period,
t t+ r. Only the phase prefactor in Eq. (20) is altered
when the time is so advanced,

in which y„,,(q, t) is strictly periodic. The situation
here is akin to the Bloch waves in a periodic crystal, but
with space and time interchanged and the crystal
momentum replaced by the quasienergy E, . Although in
general fr. ..(q', t) is time dependent, experiments are
often performed where y„,,(q', t) is nearly time indepen-
dent. This can be the case for the "spring constant" (2)
with a =0. Writing cop =2tr/r, this is the case if
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b/mto() «1, and

f (t) '=e' '[I+(b/mcoo)cosroot] (28)

'r„„=—i dt&n', +~~H) (t) ~n,
—~)

is a good approximation to the solution. In this case,
co /ro() = 2~ (b/mtoo) && I, the Wronskian 8'=co, and

)it„,,(q', t) is approximated by the wave function of a
simple harmonic oscillator of frequency cu.

We have described the wave function in some detail
since it gives a clear description of the nature of our sys-
tem. However, actual calculations are most simply per-
formed by using the transformation to the creation and
annihilation operators A, A. To give an example of the
utility of this method and also to illustrate the periodic

q(t) = [A(t)+A'(t)],f(t)
42m W

(29)

the usual oscillator rules imply that first-order transitions
take place only from an initial state n to a final state n'

with n'=n ~1. Moreover, using Eqs. (16) and (17), it
is easy to check that the first-order transition amplitude
is given by

nature of the system, we consider the perturbation of the
oscillator resulting from its interaction with an external
electromagnetic field. This we do in the dipole approxi-
mation with the interaction Hamiltonian H)(t)
= —eE(t)q(t). Using

dt E(t)[f*(t)Jn8, , )+f(t)Jn+16„,,+)].
42m W' " (30)

We consider a sinusoidal drive, E(t) =Eocos(codt), and write f(t) =e'"'F(t), with F(t) strictly periodic. Exploiting
the periodicity shows that the time integration in Eq. (30) involves

rrvd(~g ) ~ 1(cu o)d)IT d
i(N Nd)iF( )—oo ( = —oo aJ 0

2~l
2tr& to ~ rod+ — dt exp

( = —oo 0

2zil F( )
T

(31)

'The l =0 member of the sum corresponds to photon emission or absorption at the resonant frequency
rod =to = 0/r =E„+) E . Tile other terms in the sum correspond to these processes occurring at higher harmonic or
overtone frequencies. The final integral in Eq. (31) defines the Ith Fourier component of the periodic function F(t),
and so the transition probability is proportional to the absolute square of this Fourier amplitude of the classical motion.
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"' Permanent address: Physics Department, FM-15, University of Washington, Seattle, WA 98195.
'The physics done with a Paul trap is reviewed in two recent Nobel Prize Lectures: Hans Dehmelt, Rev. Mod. Phys. 62, 525

(1990); and Wolfgang Paul, Rev. Mod. Phys. 62, 531 (1990), and references therein.
2Previous work on this system has been done by R. J. Cook, D. G. Shankland, and A. L. Wells, Phys. Rev. A 31, 564 (1985); and

by M. Combescure, Ann. Inst. Henri Poincare 44, 293 (1986). Cook, Shankland, and Wells provide an approximate treatment of
the quantum motion by perturbing about a harmonic oscillator solution for a time-independent, eff'ective potential. Combescure ob-
tained the wave given below in Eq. (24) by a roundabout procedure rather than the simple, direct, canonical transformation method
used here. Our method makes the calculation of other important quantities easy, such as the transition amplitude evaluated in Eqs.
(30) and (31) below. Moreover, our method applies to any oscillator with a periodic "spring constant, " not only the sinusoidal form
[our Eq. (2)] used by Combescure.

The need for a completely quantum-mechanical treatment is shown by the experiment of F. Diedrich, J. C. Bergquist, W. M.
Itano, and D. J. Wineland, Phys. Rev. Lett. 62, 403 (1989), which places a single ion in the quantum ground state of its motion in a
Paul trap.

4Proof: In the limit b=0, f(t) =exp(it Ja/m ) and hence W) 0. With b&0, continuity demands that W remain positive since it
cannot vanish because in the parameter space (a,b) of stable solutions, ()aO which implies that f(t) and f*(t) are linearly indepen-
dent.

5The prefactor v'~ f(t) ~
appears since both sets of states are properly normalized, &Q', t

~
Q", t) =6(Q' —Q") and

&q', t)q", tl =~(q' q") while [f(t)lb(~f(t)-l(Q'-Q")) =~(Q'-Q").
The overall phase associated with the initial and final states is omitted in the second equality.
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