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Identification of Odd-Parity Superconductivity in UPt3 from
Paramagnetic Eff'ects on the Upper Critical Field
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We present a theoretical explanation of the unusual temperature-dependent anisotropy of H, z report-
ed by Shivaram et al. for single crystals of UPt3, which we argue provides strong support for unconven-
tional odd-parity pairing. We show that the observed low-temperature crossover in the anisotropy ratio,
H, 2/H, 2, can be explained by paramagnetic limiting for H parallel to the sixfold axis within BCS pairing
theory if the order parameter has odd parity and there is strong spin-orbit coupling of the pair spin to
the crystal axes.

PACS numbers: 74.60.Ec, 74.70.Tx

The properties of the heavy-fermion superconductors
(e.g. , CeCu2Si2, UBe~3, UPt3) have led to a broad effort
to understand superconductors with an unconventional
order parameter (we use this term to mean an order pa-
rameter which has a smaller rotational symmetry group
than that of the normal metallic crystal). ' One impor-
tant area involves studies of the upper critical field H, q

that separates the normal metallic state from the Abri-
kosov state of a type-II superconductor, and which can
play a key role in determining the nature of the underly-
ing order parameter. In this paper we present a theo-
retical explanation of the unusual temperature-depen-
dent anisotropy of H, 2 reported by Shivaram, Rosen-
baum, and Hinks for single crystals of UPt3, which we
argue provides strong support for unconventional odd
parity pairing.

Theoretical arguments have been put forth by many
authors (see, e.g. , Ref. 1) that the order parameter for
UPt3 transforms according to one of the nonidentity rep-
resentations of the hexagonal point group D6I, . These ar-
guments are based in part on interpretations of the ob-
served power-law temperature dependences of the ul-
trasonic attenuation, and also on RPA-like models of the
pairing interaction. Authors have argued that ex-
change of antiferromagnetic (AFM) spin Auctuations
suppresses pairing in the odd-parity and the even-parity
identity representations, but favors an even-parity non-
identity representation for the order parameter. More
recent variants of the AFM exchange model yield odd-
parity superconductivity. However, these arguments are
based on models of the pairing interaction that are not
grounded in a first-principles theory for the pairing insta-
bility. Likewise, the interpretation of the power-law be-
havior of the ultrasound attenuation in terms of an un-
conventional order parameter is based on an assumed
identification with the excitation gap, not a fundamental
relationship. Therefore, considerable theoretical eff'ort

has been devoted to identifying strong tests of the sym-
metry of the order parameter (see, e.g., Ref. 2), includ-
ing the anisotropy of dH, 2/dT~T„ for tetragonal and cu-
bic symmetry, as well as tests of broken time-reversal

symmetry. ' '' As yet there are no reports of positive
identifications of unconventional superconductivity based
on strong tests of broken symmetry.

We have considerable confidence in the predictions of
the BCS theory, even for unconventional pairing (e.g. ,

He), provided we know the relevant material parame-
ters like T„ the Fermi velocity, etc. , and most important-
ly the symmetry class of the pairing state. Thus, predic-
tions of the BCS theory that are qualitatively different
for order parameters belonging to diferent symmetry
classes are reasonably strong tests of unconventional
pairing. The loophole here is whether or not one has
identified all the relevant input material parameters.

Nevertheless, there is increasing evidence that UPt3
has an order parameter belonging to a nonidentity repre-
sentation. The strongest evidence so far comes from ob-
servations of multiple superconducting phases in UPt3
(see Ref. 12 and references therein), which are naturally
interpreted in terms of an order parameter belonging to
a fundamental representation with dimensionality & 1.
The double transition in zero field, ' as well as the ob-
served kinks in H, 2 (we use J and II to refer to H per-
pendicular to and H parallel to the sixfold axis) and

H, ~,
' has been interpreted in terms of a weak breaking

of the hexagonal symmetry which splits the transition
into a 2D representation into two nearly degenerate 1D
representations. ' ' The existence of multiple supercon-
ducting states suggests that the order parameter belongs
to one of the 2D representations: even-parity E~g or E2~,
or odd-parity E I„or Eq„.

Although attention has recently been focused on the
Ginzburg-Landau region, where anomalies in H, 2(T)
have been observed, the low-temperature measurements
of H, 2 and H, 2 contain an important clue to the iden-
tification of the order parameter. While measurements
of the parallel critical field are considerably larger than
those measured in the basal plane for T & 200 mK,
Shivaram, Rosenbaum, and Hinks found that H, 2 was

strongly suppressed relative to H, 2 below —200 mK. A
plot of the anisotropy ratio from Ref. 5, R(T) =H, q/H, 'z

(inset of Fig. 1) crosses unity at T=200 mK from
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FIG. 1. H, 2 and H, 2 vs T for the El„representation. The
anisotropy ratio is @=3.37, the effective moment is p =0.68
(except where noted), and HO=4. 8 T. Note that H, i is

suppressed by paramagnetism at low temperatures, while H, 2

is independent of p. For comparison, the data of Ref. 5 are
shown. The discrepancy between theory and experiment near
T, is due to the splitting of the transition, which is not account-
ed for in the calculation except for diff'erent T, 's for the two
orientations of the field. Inset: The ratio Hc2/Hci2 vs T/T .
The solid curve is the result for the El„representation, while
the dotted curve is obtained from Ref. 5.

R(T, )=0.6 to R(T 0)=1.25. This crossover in the
anisotropy ratio is a unique feature of UPt3 that has so
far not been explained by BCS theory, even with an un-

conventional order parameter, but is qualitatively and

quantitatively accounted for within BCS theory if (i) the
uniaxial anisotropy of the Fermi surface is included, (ii)
the paramagnetic coupling to the field is included, and
(iii) the order parameter belongs to one of the following
odd-parity (S=l) representations: Ei„, Ai„, Aq„, Bi„,
or B2„, appropriate for strong spin-orbit coupling of the
Cooper-pair spin to the lattice.

The Fermi-surface anisotropy determines the anisotro-
py ratio near T„where the paramagnetic coupling is
unimportant, while the interplay between the paramag-
netic effect, strong spin-orbit coupling, and the spin of
the Cooper pairs for odd-parity pairing is crucial for ex-
plaining the crossover in the anisotropy ratio at low tem-
peratures. For even-parity states, the upper critical field
is bounded by the paramagnetic effect for all directions
of field. But for odd-parity states, there is no paramag-
netic suppression of superconductivity if the external
field is perpendicular to the direction 6 along which the
Cooper pairs have zero total spin, i.e., 6 S =0; whereas
other orientations of the magnetic field relative to A will
be pair breaking. ' Thus, the paramagnetic limit can
have a dramatic effect on the anisotropy of H, 2 for odd-
parity states with strong spin-orbit coupling, which
serves to lock the Cooper-pair spin to the crystal lattice.

The results presented here are based on the quasiclas-
sical theory of superconductivity (we use the notation of
Alexander et al. ), which allows us to incorporate an
anisotropic Fermi surface, paramagnetic coupling, spin-
orbit coupling, impurity scattering, and an unconvention-
al order parameter into our calculations. The formalism
and details of the calculations presented here are con-
tained in a forthcoming article. '

We present results for the clean limit, 1/z; ii«2xT„
appropriate for high-quality single crystals of UPt3. The
central equation is the linearized weak-coupling gap
equation; for odd-parity (S= 1)pairing,

h(kI, R) =2rrTQ~ dr„d kI'n(k~)I (kI, k/)exp( 2rlel sgn(e)nrI aj[I+.jcos(2rpH) —Ijhigih]g(kI R),

where the sum is over Matsubara frequencies and 8=VR
+i (2e/c)A includes the coupling to the field through the
~ector potential A(R). The density of states n(k~), the
Fermi velocity vy, and the pairing interaction p'(kI kf),
are functions of position kI on the Fermi surface, as is
the eAective magnetic moment p that determines the
liaramagnetic coupling to the field. The uniaxial tensor,
hh, is defined by the direction of magnetic field, h.
For even-parity states the scalar (S =0) order parameter
satisfies a similar equation to (1) with hh ~ 1. The
upper critical field is then computed as the largest value
of H for which Eq. (1) has a nontrivial solution. Note
that the paramagnetic term is unimportant close to T,
for both odd- and even-parity states; however, it has an
eff'ect on H, 2 at lower temperatures, except for odd-
parity states with h, J H.

Our calculations of H, q for UPt3 depend on the follow-
ing material parameters: (i) Principal Fermi velocities,

Uf and UI, to parametrize our uniaxial model for the
Fermi surface. (ii) An effective moment for quasiparti-
cles, p. (The effective moment is in general a crystal
tensor; however, our conclusions are insensitive to this
structure, so p is taken to be a single parameter here. A
more detailed discussion of this point is given in Ref.
21.) (iii) A transition temperature T, (in zero field)
determined by the most attractive pairing channel, which
will be one of the irreducible representations of the point
group D61, . We assume that only one pairing channel is
significant, thus excluding an accidental degeneracy of
two representations. We also omit all symmetry-break-
ing fields that might reduce the 2D representations to
two nearly degenerate 1D representations. Thus, the cal-
culations we present do not show the kink in H, 2 near
T„but since we are interested in the eAect of para-
magnetism on the intermediate- and low-temperature be-
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havior of H, 2 this is not a serious limitation.
It is useful to introduce the coherence lengths
vf /2' T, and g~~

=
vj /2+T„and a magnetic-field scale

H p=(hc/2 e)/xg&, as well as the dimensionless parame-
ters

ri =(g~~/g&), h =H/Hp, p =pHp/AT~ . (2)

TABLE I. Limiting values for the upper critical field of hex-
agonal crystals with unconventional order parameters. Column
1 lists the representations of the unconventional order parame-
ter discussed in the text. The form of the order parameter at
H, 2 is given in column 2 along with the (unnormalized) basis
functions used to evaluate the Fermi-surface integrals. The
upper (lower) row corresponds to Hllz (HJ i). Variational
calculations are denoted by a g. Columns 3 and 4 give the lim-

iting values of the upper critical field in units of Ho for p =0,
T =0 and T=T„respectively.

Rep. Order parameter at H, 2 h, 2(0) —T, dh, 2/dT

E („lopez(k„ik&)+ coiooz(k„—+ik,,).
ypzk,

E2u 4o(i+iy)(k +ik,).
iso(xk, +yk, )

B i u Poz(k„' —3k„k)2)
iooz(k3 —3k„k2) t

Eig io2k-(k„—ik, )+co&ok (k, +ik, )-
yok k, '

0.77
1.01/Wq
0.37
0.65/J~
0.32
0.92/ Jg
1.15
0.70/ Jg

1.08

0.59
0.84/Jg
0.53
1.07/ Jg
1.51
0.96/ Jg

We have solved Eq. (1) for the upper critical field of the
odd-parity representations (and a similar equation for
the even-parity representations) of the hexagonal group
with H along z, the axis of sixfold symmetry, and also
for H in the basal plane.

We first consider solutions for the odd-parity 2D rep-
resentations, E~, and E2„, and also the B~, representa-
tion, which for our purposes is representative of all the
1D odd-parity states. Consider the E~„order parameter
(see, e.g. , Ref. 22),

A(kf, R) =z[g+(R)f*(kf)+tl (R)f(kf)], (3)

where f(kf) is given in Table I. Note that LL is along z,
so that the Cooper-pair spin is in the basal plane. The
amplitudes q~ (R) satisfy a homogeneous equation that
depends on H and is simply obtained from Eqs. (1) and
(3). The order parameter and upper critical field are ob-
tained for all temperatures by a standard method of in-
troducing raising and lowering operators and a set of
eigenfunctions [P„(R)f of the harmonic-oscillator prob-
lem.

When the magnetic field is along i, the maximum
value of H occurs for (ri+, tl —) —(&2,cpitip). Without
paramagnetism, h, 2 has the limiting values shown in

Table I. Since the pairs have S, =0, the paramagnetic
term reduces h, 2. Figure 1 shows the reduction in

h,"2 (T) at low temperatures due to paramagnetic limiting
as well as the absence of a paramagnetic effect near T, .

By contrast, h, z(T) is independent of the paramagnetic
effect because the pairs have no amplitude with zero spin
projection for directions in the basal plane.

In Table I and Fig. 1 we summarize the results for the
E~„representation as a function of T/T, for relevant
choices of the effective-mass ratio g and scaled effective
moment p. Both h,"z and h, q are scaled in units of Hp',

h,"2 is then independent of q, while h, 2 scales as I/Jq.
As noted earlier the paramagnetic effect can signficantly
reduce the value of A, 2 at low tempertures, whereas it
has no effect on h, 2. Thus, by adjusting g and p, we ob-
tain h, 2 and h, 2 that cross over at an intermediate tem-
perature. We have a crossover around 0.4T, for g =3.37
and p =0.68; the inset of Fig. 1 shows the anisotropy ra-
tio h, q/h, "2 as a function of T/T, for this choice of pa-
rameters, compared with the experimental values from
Ref. 5. Figure 1 also shows the measured values of H, 2

and H, 2 compared with the theoretical calculations. We
have purposely chosen slightly different values for T, of
H, 2 and H, 2, which emphasizes the discrepancy in the
narrow temperature interval of the double transition, but
provides a better fit to the data away from T, . An essen-
tially perfect fit to the full temperature range, including
the region of the double transition, can be obtained by
including the splitting of the E~„representation by a
weak symmetry-breaking field. '

For the E2„representation, the order parameter,
~ A

A(kf, R) =@+(R) f(kf)+g —(R) f*(kf),

(4)

differs significantly in its magnetic structure from that of
E j„. When Hllz the upper critical field is independent of
the paramagnetic term and has a maximum eigenvalue
for (ri+, ri —) —(pp, O), and for fields in the basal plane
H, 2 is quite sensitive to p. We can obtain a very weak
crossover in the anisotropy ratio even without the
paramagnetic term for the limited range 2 & g & 3; how-
ever, this crossover is much too weak to account for that
observed in UPt3, and becomes more isotropic as p is in-
creased (see Ref. 21 for details).

There are four odd-parity, 1D representations in the
limit of strong spin-orbit coupling, all of which have a
similar spin structure to that of the E~, representation
and, therefore, exhibit similar anisotropic paramagnetic
effects. We choose B~„ to illustrate the 1D representa-
tions with h(kf, R) =g(R)zf(kf). A numerical calcula-
tion of the anisotropy ratio h, z/h, '2 for @=11.0 and

p =1.2 gives an almost identical fit to the experimental
data of UPt3 as that shown in Fig. 1 for the E~„repre-
sentation. Similar results can be obtained for all of the
1D odd-parity representations with suitable choices of
the anisotropy and paramagnetic parameters.

The important distinction of the even-parity states is
that the paramagnetic term is important for any direc-
tion of the magnetic field. For the E~g representation,
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&(kI,R) =ri+(R)f*(kI)+ri —(R)f(kI) has a similar or-
bital form to that of E~„. And not surprisingly, the solu-
tions for (q+, ti-) are of the same form as for the odd-
parity E ~, representation; for Hllz the upper critical field
occurs for (ri+, ri —)—(&2,copo). For Hllx we performed
a variational calculation for h, 2, the precision of which is
=1%. The important point is that we do not find a
crossover in the anisotropy ratio h, 2/h, "2, with h, 2 ) h,"q

at T=O, for any values of t) and p. Similar results are
obtained for the other even-parity representations, and
are discussed in Ref. 21.

We have calculated the upper critical field for order
parameters belonging to the even- and odd-parity repre-
sentations of the hexagonal point group with strong
spin-orbit coupling. The eAects of paramagnetism and
anisotropy of Fermi surface on the anisotropy of the
upper critical field, in particular the crossover behavior
of h, z/h, "z, were examined in detail. For odd-parity
states E~„and B~„, with 6, parallel to z, the anisotropy
ratio h, 2/h, '2 fits the data on UPt3 well with two parame-
ters that measure the Fermi-su)"". =v anisotropy and the
paramagnetic eAect. Although our model for the Fer-
mi-surface anisotropy is simple, we note for comparison
that the values, ri=3.37 (11.0), Ho=4. 8 T (9.4 T), and

p =0.7 (1.2), which we obtain from our fit for the E~„
(8 ~ „) representation imply an effective moment of
@ =0.34ptt (p =0.30ptt), in reasonable agreement with

several other estimates. The important point is that
the Fermi-surface anisotropy and paramagnetic coupling
give rise to a crossover in the anisotropy ratio of the right
magnitude and temperature dependence for realistic
values of the material parameters only for odd-parity
states with A along the z axis. In particular, for the E2,
representation (Ai z), the paramagnetic term affects
only h, z, and not h, 2, and thus cannot account for the
observed crossover. For even-parity states, the paramag-
netic effect suppresses both h, z and h,"q, and even tends
to reduce the anisotropy of the upper critical field at low

temperatures. These characteristics lead us to conclude
that the experimental data of Ref. 5 provide strong sup-
port for odd-parity pairing in Upt3.
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