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Scale-Independent Fluctuations of Spin Stiffness in the Heisenberg Model
and Its Relationship to Universal Conductance Fluctuations
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It is shown that, at low temperatures, the absolute thermal fluctuations of the spin-stiAness constant in
the classical Heisenberg model are independent of the scale L for d (4, if L is larger than the lattice
spacing but smaller than the correlation length, while the relative fluctuation is proportional to L
where d is the dimensionality, and is thus scale independent in d =2 (with logarithmic corrections). The
phenomenon is strikingly similar to the universal conductance fluctuations known for the problem of an
electron in a random potential.

PACS numbers: 75.10.Jm, 72. 10.Bg

In 1985, Lee and Stone' and Altshuler predicted that
the fluctuation of the conductance in a mesoscopic sys-
tem should be universal (since this prediction the subject
has grown immensely. ) A sample is considered to be
mesoscopic if its linear dimension L is larger than the
mean free path I, which acts as a microscopic cutofI' in

any field-theoretical discussion, but smaller than the
length scale at which the phase coherence of electrons is
broken. It was shown that if we denote the average con-
ductance by (G), and the absolute fluctuation of the con-
ductance by ((8G) ), then ((8G) ) is independent of
scale and is universal for d (4, where d is the dimen-
sionality of the sample. The average conductance (G) is,
of course, proportional to L",with logarithmic correc-
tions in d=2. Thus, the relative fluctuation of the con-
ductance, ((BG) )/(G), is proportional to L " and is
scale independent in d=2. More recently, Altshuler,
Kravstov, and Lerner (AKL) have shown how this re-
sult, among many others, can be obtained from a replica
field theory. This replica field theory is an extended non-
linear o model defined on a symplectic Grassmannian
manifold. This raises the tantalizing possibility that a
similar result should also hold for a much simpler mani-
fold, namely, the coset space of O(N)/O(N —1). In the
present paper I shall show that this is indeed so. For
N=3 this is simply the O(3) nonlinear cr model which
faithfully reproduces the long-distance properties of the
classical Heisenberg model defined by unit vector spins
on a hypercubic lattice.

Because the classical Heisenberg model is so phys&cal-
ly diA'erent from the problem of an electron moving in a
random potential, it is important to define carefully the
sense in which the result known for the electronic prob-
lem generalizes. It follows from AKL that the conduc-
tance is a stiff'ness in response to a twist in the boundary
conditions of the replica fields. Thus, the conductance is
a susceptibility defined with respect to the twist. Simi-
larly, fluctuations of the conductance and its higher mo-
ments, as described by AKL, are nonlinear susceptibili-
ties. This is not such an unusual definition as it may

sound. It was pointed out by Kohn that the zero-fre-
quency limit of the imaginary part of the conductivity of
a sample can be related to the response, or more precise-
ly to the shift of the energy levels, of the electronic sys-
tem with respect to a twist in the boundary condition of
the electronic wave function. A twisted boundary condi-
tion was also beautifully utilized by Edwards and Thou-
less in the context of Anderson localization. As stated
above, the response to the twisted boundary condition, as
applied to the electronic wave function, is related to the
imaginary, rather than the real, part of the conductivity.
However, with some plausible assumptions about the fre-
quency dependence, the response can also be shown to
yield the real part. The twist of the boundary condition
of the replica ftelds, however, does correctly give the
conductance, and it is this definition of the conductance
that generalizes to the magnetic problem. For a Heisen-
berg magnet, defined on a hypercube of linear dimension
L, I apply a twist of the spin field on the boundary, and
ask, how does the system respond? The response defines
the well-known spin-stiA'ness constant. I then calculate
the thermal fluctuation of the spin-stiAness constant and
show that the absolute fluctuation is scale independent
for d & 4, while the relative fluctuation is proportional to
L " and is therefore scale independent in d=2, with
logarithmic corrections.

I still need to discuss what are meant by fluctuations
in these two disparate physical problems. Clearly, the
fluctuations of the conductance of a sample are due to
disorder, while in referring to the Heisenberg model we
are speaking about a pure system without disorder.
However, to the extent that the replica field theory is a
meaningful description of the conductance problem, the
fluctuations are given by the action of the replica field
theory which acts like the Boltzmann weight. The in-
verse conductivity, deftned on the scale of the mean free
path, then acts as the "temperature. " In this descrip-
tion, in which disorder is integrated out at the very be-
ginning, disorder no longer appears explicitly. Thus, the
fluctuations due to disorder, as viewed from the replica
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field theory, are analogous to thermal fluctuations. Of
course, in the magnetic problem the fluctuations are
nothing but the thermal fluctuations. To clarify this
point, consider, for example, the d=2 Heisenberg model
which does not have long-range order at any finite tem-
perature but has exponentially growing correlation
length, (~exp(2', /T), for temperatures T low com-
pared to the microscopic spin-stifI'ness constant p, . The
macroscopic spin stifI'ness is, of course, zero. However,
at low temperatures, and on length scales smaller than
the correlation length, local spin stiAness is a nonvanish-

ing quantity. Thus, the picture is that of locally ordered
regions. The fluctuations of the Heisenberg model dis-
cussed here are the thermal fluctuations on the scale of
these locally ordered regions. Because the correlation
length diverges rapidly as the temperature tends to zero,
these local regions can be quite large. It should also be
noted that the theory of conductance fluctuations, as we
know today, only applies to the regime of weak disorder
where the localization in d=2 is large but finite (see,
however, AKL). I shall show that for length scales
much larger than the lattice spacing, but much smaller
than the correlation length, the absolute fluctuation of
the spin-stiff'ness constant is independent of scale in

d (4. The average spin-stiA'ness constant, however, de-

pends logarithmically on the scale in d=2, as in the con-
ductance problem.

Let us begin by defining the O(N)-invariant nonlinear
0. model which is given by the action

tance problem in which the interactions between the
short-wavelength diftusion modes are negligibly small.

Now consider a hypercube of linear dimension L, and
apply the following boundary conditions in the x direc-
tion:

n(x=o)=O, , ~(x=I)=o, , (2)
A,

where O~ and Qq are two constant vectors making an
Il

angle 0, 0 ~ 0 2 =cosO. Choose now a reference frame
such that 0

~

= (1,0,0, . . . ) and 02 = (cos9, sin0, 0,
0, . . . ). Now make the following transformation:

c os(Bx/L) sin(Ox/L) 0
Q = —sin(Ox/L) c os(8 x/L) 0 oq

0
(3)

p f 02
S = ' ddx (a,'+ cr,')+ (t);cx, ) '2T"

The boundary conditions satisfied by the new fields are
o.

~

= 1, ~2 =0, and +=0 at x =0 and x =L. We can
choose periodic boundary conditions in the remaining
d —1 directions. The vector x has X —2 components,
and we must have o~ +cr2+x =1. Because this trans-
formation is orthogonal, the Jacobian of the measure of
the path integral is unity. The new action 5 is now given
by

S = ' ddx(6;n)',2T" + (il;op) '+ (rl;x)' (4)

where the sum over the repeated index i is implied. The
¹ omponent vector 0 has unit magnitude. The parti-
tion function Z is given by the sum over all unit-vector
spin configurations weighted by the Boltzmann factor
e . Note that p, /T has the dimension A, where
A is the microscopic length scale at which it is de-
fined. In particular, it is dimensionless at d=2. This
model describes a theory of interacting spin waves, simi-
lar to the theory of interacting diff'usion modes of the re-
plica field theory for the problem of electrons in a ran-
dom potential. It is, by now, well understood that this
theory has asymptotic freedom in d=2, i.e., the interac-
tions between the spin waves at short length scales are
negligibly small but grow with increasing length scales.
Thus, the spin waves propagate freely at short length
scales. We also have the same picture in the conduc-

For convenience, define h =—0 /L, and note that by tak-
ing derivatives of —lnZ with respect to h one can obtain
any moment of the spin-stiffness constant. In particular,
the first derivative with respect to h defines the spin-
stifr ness constant.

I shall discuss the renormalization-group analysis of
this problem, much along the lines given by AKL, else-
where. In the present paper I shall only derive the one-
loop result which is exactly on the same footing as the
original derivative of the conductance fluctuation. To
derive the one-loop result it is sufhcient to keep terms
only to quadratic order in the action S. This is because
each power of the field variable brings in a factor
(T/p, ) ' in a loop-wise expansion. After eliminating
o~, in terms of o.2 and x, the quadratic part of the action,

I Squa, is

0 0

S „,= ' hL'+ ' '
I d"x[ —h~'+(a, ~,)'+(e, ~)'l.

2T 2T ~ (5)

Note also that the elimination of o~ produces a factor + [1 —oq(x) —m (x)] '~ in the measure of the path integral.
The integral over o.2 can be trivially carried out and the result, because it does not depend on h, can be lumped into the
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measure of the path integral. We therefore get, to one-loop order,

a
lnZqU&

g2
, o--0

0
d 2 ps

2T

r
0

dx(tr'(x )&
=L ' ' 1—L,2T, L p q q

(6)

(Ap. ) '=
2

lnZqUg
g2

0 2

L4 2T
ddx ddy([tr'(x) —(tr'(x)&] [tr'(y) —(x'(y)&]& = g . (7)

2L4 q q4

The lower limits of the primed wave-vector sums in Eqs. (6) and (7) are assumed to be 1/L. The averages in Eqs. (6)
and (7) were carried out with respect to the quadratic action, Eq. (5), except that the first two terms in the integrand
are missing, i.e., the action density is simply (t);tr) . Equation (6) simply defines the spin-stiffness constant at the scale
L, and Eq. (7), the absolute thermal fluctuation of the spin-stiffness constant at the scale L. Note that this is also a
nonlinear susceptibility. It is easy to evaluate Eqs. (6) and (7), and to leading order in L, we get, for 2 & d & 4, the
relative fluctuation to be

(A )2/ 2~L4 (8)

The absolute fluctuation, however, is scale independent for d & 4. More explicitly, in the interesting case of d =2, we
get

(Ap, ) '

ps

2
N —2 T 1

p, 1
—[(N —2) T/2trp, ] ln (AL )

2z
(N —2) [In(g/L)1'

(9)

Note that we have assumed that A '(&L«g; thus the
denominator in Eq. (9) never becomes too small. The
one-loop result for g is, of course, given by the value of L
for which the denominator of Eq. (9) vanishes. The last
part of Eq. (9) shows that the result can also be ex-
pressed in terms of the physical correlation length, thus
eliminating both A and T/p, from the equation. Of
course, the weak logarithmic dependence on the scale L
is also present in the electron problem. In the metallic
phase of the electron problem, for dimensions d & 2, the
Josephson length' (J separates the long-distance Gold-
stone behavior from the short-distance critical behavior.
The average spin-stiA'ness constant calculated here
agrees with the expression obtained previously using a
diAerent method. ' '

In conclusion, I have shown that the universal conduc-
tance fluctuation discovered in the context of electrons
moving in a random potential has a close analog in the
fluctuation of the spin-stifrness constant in the classical
Heisenberg model. This appears to be both unexpected
and novel. I hope that this analogy may serve to deepen
our understanding of this problem. A direct experimen-
tal verification of the results derived in the present paper
may be difficult but not out of the question; a place to
look could be a system composed of fine magnetic grains.
As mentioned earlier, a renormalization-group analysis
of this problem, much along the lines given by AKL, will
be given elsewhere. It is also possible that a better un-
derstanding of the nature of the moments of the spin-
stiAness constant may resolve the difficulties that have
been pointed out for the 2+e expansion of the O(N)
nonlinear o model. '
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