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Equation (2) predicts the rapid rise in critical thick-
ness through a combination of a hyperbolic and exponen-
tial dependence on temperature. A temperature depen-
dence which depends on exponential terms alone gives
too high an activation energy. An example is the theory
of Dodson and Tsao in which the critical thickness de-
pends on the time taken for an overlayer to relax. This
time can be written' as

(3)

where 8'=f e is —a measure of the overlayer relaxation,
6=6,q„when Eq. (1) is satisfied, C is a constant, U is a
glide activation energy, and 60 is the initial relaxation of
the overlayer due to grown-in dislocations. A lower
bound on U can be estimated by comparing the times to
relax on either side of the transition. Considering that
the film growth rate is —1 monolayersec ', the mea-
surement time is —10 sec, and the total experiment
time is & 10 sec, a conservative lower bound for U can
be found from t(8,q„,743) & 10 t( 2 S,q„,763), where the

use of 2 6,q„avoids possible lengthy asymptotic ap-
proaches to 6,q„. This inequality gives U& 10 eV if the
ratios of the integrals (—5) are ignored and U & 15 eV
if they are included. These energies are too high for
dislocation activation. The transition can be sharpened
if 6',q„ is derived from Eq. (2) rather than from Eq. (1)
for as f becomes tangential to e(h), the term (8,q„—8)
rapidly decreases. However, calculation shows that the
activation energy still remains too high.

Equation (2) will now be applied to island growth. Of
interest is the transition between layer and island growth
modes for diff'erent misfits. It will be argued, on the
basis of a simple growth model which describes the gen-
eral experimental behavior of these strained overlayers,
that while 6 defines the state of relaxation of these films,
d8/dh is the parameter which determines the island

growth transition. The problem then reduces to deriving
this parameter as a function of x from Eq. (2). The ex-
perimental observations which must be fitted are the fol-

lowing: Three-dimensional growth is observed with

RHEED within a monolayer of h, . ' Experiments over
the range 0.3 «x «0.5 show that these three-dimen-
sional features attain a maximum within a few mono-

layers and then revert to layer growth. If a thick layer
is grown at a low temperature where islands do not form
and the temperature is then raised, three-dimensional
features appear. ' The misfit value of —0.02 is a bound-

ary below which, even at high temperatures, three-
dimensional features do not appear. ' In what fo11ows, a
two-parameter model which fits these observations will

be described and used to calculate the effect of strain on

the island-to-layer transition. The assumptions' of the
model are that (1) islands are nucleated by misfit dislo-
cations, (2) each monolayer is grown in either the layer
or island growth mode, and (3) dislocations which nu-
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I.IG. 3. Left ordinate: distance between misfit dislocations
plotted against temperature after 1, 2, 4, and 10 monolayers of
I no 33Ga() 67As have been deposited in addition to A, on GaAs.
Right ordinate: curves of misfit strain against temperature
with constant values of d8/dh equal to those at h, for x =0.33
and for the temperatures. indicated.

cleate an island do not contribute to island nucleation
later in the growth. Assumption (1) is supported by the
simultaneous appearance of island growth and lattice re-
laxation. Detailed nucleation mechanisms will not be
discussed here but it should be noted that dislocated is-
lands within a strained layer can have a lower energy
than a unformly dislocated overlayer ' and the screw
component of the 60 dislocations can overcome kinetic
barriers to three-dimensional growth. Let k be a surface
diAusion length which characterizes the perturbation of
the layer growth by the misfit dislocations and let the
length g be dependent on the spacing between the misfit
dislocations which are introduced by each monolayer:

(=((1/(d8/dh)). These parameters are defined so that
for layer growth g&X and for island growth
(This is analogous to heterogeneous thin-film growth
with X the catchment radius of strongly trapping hetero-
geneities. ) Below h„d6/dh =0 and (»X; hence there is

layer growth. At h„dB/dh is a maximum (see Fig. 2)
and then decreases approaching zero as h increases. If
g (k at h„ islands will form; but as the growth proceeds

will become greater than X and layer growth will

resume as observed. The distance between dislocations
(b/28 for 60' dislocations) is plotted in Fig. 3 as a func-
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tion of temperature for fixed numbers of monolayers past
h, using Eq. (2). The increase in dislocation spacing
occurs as f becomes tangential to e(h). As the tempera-
ture is lowered, d8/dh

~ t, + decreases rapidly until
7 & (It, + and layer growth occurs. This accounts for the
no-island region shown in Fig. 1. The value of X is un-
known; estimates of diffusion lengths on III-V semicon-
ductors range from a few hundred angstroms (-4
AexpH0. 3 eV)/kT]), for two-dimensional nucleation
in the presence of vicinal steps, to microns for linear
diA'usion. The former is more likely to fit the present cir-
cumstances and has the right magnitude. The assump-
tion of constant k in this model is a reasonable approxi-
mation because of the much stronger temperature depen-
dence of dB/dh ~h ~.

This model is now applied to the variation of the
island-to-layer growth transition with x or misfit. If we
ignore the weak dependence of the constants in Eq. (2),
then only the misfit f is a function of x and the curves of
Fig. 2 are not only of identical form but are identical to
the e(h) for all x. Consequently the intersection of a
line of constant h with the curves of Fig. 2 has a constant
d8/dh ~t, + for all T, with the coordinates of the intersec-
tion (h,f(x)). A plot of the misfit strain against tem-
perature for two d8/dh characteristic of the edge of the
x=0.33 transition of Fig. 1 is given in Fig. 3. For
misfits below these curves, there will not be island
growth, since g )X at the critical thickness and can only
increase with h. (This can best be seen by dropping a
vertical line from the intersection of f and the 490'C
curve of Fig. 2.) Figure 3 shows that this cutoff of island
growth against strain occurs below f=0.02, in agree-
ment with experiment. Thus, in conclusion, the incor-
poration of temperature dependence through Ff and the
identification of dB/dh as the characterizing parameter
for island growth have given agreement between theory
and experiment for both critical-thickness and growth-
mode transitions in highly strained InGaAs.
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