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Finite-Size Scaling of Driven Diffusive Systems: Theory and Monte Carlo Studies
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By identifying anisotropic scaling as the dominant feature of a lattice gas driven by a strong electric
field, I obtain finite-size scaling forms by extending exact field-theoretic results. These are tested and
supplemented by extensive Monte Carlo simulations in two dimensions. Excellent agreements are found.
This resolves the disagreements between simulations and theories on the universality of the related mod-
els. Novel features of the finite-size eAects of intrinsically anisotropic systems are emphasized.
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In recent years, the study of critical phenomena' has
been extended to nonequilibrium systems under steady-
state conditions. ' One of the central issues is whether
the important theoretical concept of universality remains
pertinent to a detailed description of the singularities
near a steady-state critical point, as it does in equilibri-
um. If universality holds, then simplified and theoreti-
cally tractable models can be used to understand and
predict properties of much more complex systems be-
longing to the same universality class.

In this regard, an extensively studied system giving
rise to controversies is the Ising lattice gas with attrac-
tive interactions, driven by a uniform electric field that
maintains a current-carrying steady state. When ana-
lyzed analytically in dimension d=2 under extreme an-
isotropic jump rates, mean-field exponents were found.
With universality in mind, detailed analyses of a
closely related continuum model yielded a new stable
fixed point in an e=(5 —d) expansion. Critical ex-
ponents were obtained to all orders for 2 & d & 5.
These models are known as "driven diffusive systems. "''
Despite considerable effort, ' however, simulations
have only been able to provide qualitative comparisons,
and in some cases disagreements, with theories. As an
example of the latter, the estimate of the order-
parameter exponent P=0.23 in d=2 is at odds with

as predicted by theories ' ' (subject to possible loga-
rithmic corrections). Moreover, the data seem to be con-
sistent with one correlation-length exponent, rather
than two as required by intrinsic anisotropies.

These discrepancies call into question the applicability
of the concept of universality to steady-state criticality,
casting doubts on the theoretical approach of calcula-
tions using simplified models, based on criteria such as
symmetries and conservation laws. ' In view of the con-
siderable interest in nonequilibrium steady states in re-
cent years, ' especially when most of these systems are
confined to be finite on computers, it is not only of broad
fundamental interest, but also of urgency, to make de-
tailed comparisons between model calculations and simu-

lations in order to settle this uncertainty. Motivated by
this goal, I consider in this Letter the problem of finite-
size effects in driven diffusive systems.

For nonequilibrium systems, there is very little exploi-
tation of the idea of finite-size scaling' in analyzing
simulation data (except some speculations at T, by
Binder and Wang ' ). Previous simulations therefore
rely on direct estimates, ' isotropic finite-size scaling, or
questionable extrapolation procedures to infinite sizes.
The origin of the subtlety of finite-size effects is clearly
the intrinsic anisotropies (not removable by rescaling of
lengths), typical in systems driven by unidirectional
forces. To see this systematically, I consider, in the
framework of the continuum model, the connected
equal-time correlation functions in momentum space

G' '(jk, 1) =&y(k, ) y(k~))

where ( ), denotes an ensemble average of the cumu-
lant, and p is the local magnetization density. For
2 & d ( 5, the dangerously irrelevant p -coupling con-
stant ' u effectively introduces a new length scale into
the problem, and leads to the violation of hyperscaling as
in equilibrium. ' ' From the Callan-Symanzik (CS)
equation, ' we deduce at small k

G, (k) —=G,"'(k, —ic)

=kx "'G(tkx, k~~kz, ute), (1)
where k& (k~~) is the component transverse (parallel) to
the driving field, and t = (T T, )/T„with T, the —critical
temperature of an infinite system. The exponents are
exact: rl~ =0, X=2+e/3 (=v~~/v& in Ref. 5), and
0 = 1

—e/3. The variable k ~~k ~ implies that in a
renormalization-group (RG) transformation k & k ~b,
k~~ k~~b under a scale change by a factor b, in order to
keep the dynamic functional (or the Langevin equation)
invariant. To generalize Eq. (1) to finite systems of
geometry L& 'I

~~, we may, according to the RG deriva-
tions of finite-size scaling for equilibrium systems, ' '
treat L~ ' and L~~

' as two extra (relevant) variables.
Linearizing about the fixed point yields

G, (k»k~i~, t, u, L& ', L~ ')=b G, (k~b, k~~b, tb, ub, L& b, L~~ 'b ) =L Gc(kaL~l, k~~L~~, tL,uL, S,const), (2)
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after setting b =const&&LlI . Equation (1) is recovered
under the thermodynamic limit L& ~, L~I ~ with
the shape factor S=L3 'Lll' held inixed, expecting as
usual that tL~~ controls the singular behavior of 6,.
Hence the exact exponents from field theory (e.g. ,

P = —,
' ) are defined in this limit that does not preserve the

geometry.
For simplicity, I consider henceforth G (k ) with

k~—= (k ' =2m/L3 k = . . =k ' =k =0) as
motivated by the anisotropic ordering found in simula-
tions. ' Because of conservation, k corresponds to
k =0 for nonconserved systems. Thus

G, (k~, t, u, L3 ', Lll ') =Lll G2(rLll, U, S) (3)

defines 62, where U= uL
~~

. In equilibrium, the
dangerous nature of u leads to the well-known mecha-
nism of multiplicative singularities above the upper criti-
cal dimension. ' ' Thus we expect as U 0,

G =I '"U"'G, (rL,"U"' SU"') . (4)

=Ll SPU 'G (iL SqU"), (5)

where ul =ul+u3p, u2=u2+u3q, and i:[T—T, (L—&,

Ll)l1 /T( L~, Ll)ltakes care of the shift of T, due to the
second variable of G2. The form of Eq. (5) is adopted as
a working hypothesis, and is of course subject to more
rigorous examination such as Ref. 18.

It is important to distinguish between t' and t as, fol-
lowing the well-known argument, '

r
*=—[T,(L~,L ll ) —T, l IT, =L ll U "'F(SU"') (6)

with some suitable function F. So, for x =SU ',

tLll SqU ' —tLll/ SqU"'=xqF(x), instead of a constant
as for isotropic block systems. Thus i, not t, enters Eq.
(5)."

Similarly, solving the CS equations and assuming the
same mechanism for singularities as in Eq. (5) yield

m =Lll '+""S"U"'rri(ir. ""SqU"'),

G (4)(k ) L (3+r/+x)/)S U G (iL 2/)SqU )

(7)

where m is the order parameter. Since they are derived
from the common dynamic generating functional (9'[J],
J being an external field) analogous to the free energy
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Apart from the above thermodynamic limit with S
fixed, I also consider the limit L~ —L~~ ~, as common
in most simulation studies. Note that now S 0, which
for isotropic systems corresponds to L& ~, L~I

but Lll/L& ~ 0; to my knowledge, the associated behav-
ior has not been understood. The discussion for the an-
isotropic ease is therefore somewhat speculative. Clear-
ly, S cannot be simply set to zero. Motivated by the
ubiquity of power laws near criticality, ' I conjecture
that asymptotically for small S,

G =L
ll
"U"'(SU"') 'G2(rL ll'"U"'(SU"') ')

indicates crossing at t =0 for diAerent sizes, since the
prefactors cancel out exactly.

Since the u; should be independent of the value of S,
they can be determined by imposing that the L depen-
dence cancel out in each of Eqs. (5), (7), and (8) in the
limit L~~ =L& ~, and then identifying the prefactors
with those as determined away from T, bp mean-field
theory: i.e., m ~u '~, 6, ~u, and 6, ~u. This
procedure has been known to yield hyperscaling viola-
tion. ' ' It leads to u

~
=u2 = —

—,
' . Unaware of any fur-

ther theoretical argument and without making any fur-
ther assumption (e.g. , the form of the real-space correla-
tion functions' ), the two unknown powers (one with S
prefactor, another with t) have to be determined either
in a more rigorous approach or by numerical means. Of
course, if S is fixed and finite, Eqs. (6)-(9) still hold
with the same u; and with t replacing i.

In d =2, u is marginal. Without seeing any reliable
way to predict whether it would lead to logarithm correc-
tions in the presence of the relevant variable e that repre-
sents the drive, I disregard such corrections in the follow-
ing discussions. The good fits of the data below support
that such corrections are weak and numerically
insignificant. Thus, with X=3 and 0=0, we have from
Eq. (7).

m =Lll ' S'm(tLll Sq), (10)

and likewise for G, (k ) and gz. The shift of T, is
simpler: r* =Lll F(S) and hence tLll S = rLll S
+SqF(S). We now turn to the results of simulations in
an attempt to test and supplement these predictions.

Simulation results. —I use the standard Monte Carlo
technique ' with Metropolis spin-exchange jump rates
on the d=2, half-filled, driven Ising lattice gas with at-
tractive interactions, for a wide range of system size,
with periodic boundaries. The driving field E is elec-
tively infinite. Most runs are as long as 2X10 sweeps to

in equilibrium, ' they share the same scaling variable in
t .Furthermore, we expect (see Ref. 16 for details)
u3=p[ —p2, u~ =p~ —2p2, and u4=pi 4p2, ~here p[
and p2 are associated with the singularities (of U) multi-
plying 9 and J, respectively. The subtractions of p2 fol-
low from diAerentiating 9 with respect to J. Hence
u4=3u [

—2u3. Similarly s=3p —2r.
The relation IlIIlz limi, OG, (k )/V=m is a natu-

ral generalization of that for nonconser ved systems
which has k=0 instead of k (see Ref. 16 for details).
Here h is the magnetic field and V the volume. This
gives u4=4u3=2ul, s=4r —3(d —1), and p =2r —(d—1). With these relations, the generalization of the re-
normalized coupling '

gz = ——'G,"'(k )/V[G, (k )1'

(L
—lL l/). ) s —4r+ 3(d —l )G /G 2



VOLUME 66, NUMBER 4 PHYSICAL REVIEW LETTERS 28 JANUARY 1991

0.7
P

a Gaussian,

0.5- L~x L()

p 4- ~ 20x20

p 3- P 26x44

p.2- 32x82

p i — a 40x160

a

ct
+

LP a
+'

0
-6

0.7

4 2

Lll *(T-Tc)/Tc
4

0.3-

(b)

0.1—

-0.1—
0

-0.3-

-0.5- T)Tc

-0.7
-2 -1.5 -05 0

log [L~~
' (T Tc)/Tc]

0.5

FIG. 1. Scaling plots of fixed-S data, S=L~ 'I.
~i
'=0.136.

(a) gL vs tLP'; (b) log-log plot of mLilt' vs tLiP'. The asymp-
tote below T, shows P = —, .

as L cc, so gt 0. Below T„gL —', [Fig. 1(a)1.
For runs of fixed S, the predictions of Eqs. (9) and

(10) (with t replacing t) are clearly borne out, with

T„= 1.418 + 0.005, and g(t =0, S =0.136)= 0.31
+ 0.03, which, though unavailable analytically, diff'ers

distinctly from 0.611 of the d=2 Ising model in square
geometry. Figure 1(b) shows full accord of the data
with P = —, , and with the high-T tail that implies an am-

plitude ~ S ' I L
~~

(L ) S cc I /MV. Fot
runs of various small S, I consider if (9) and (10) give
good fits. I start with gL =g(t'L~~ S ) because it involves

q only. The predicted crossing at t =0 is confirmed and
its scaling behavior is obtained for q

= —
—, , yielding a

scaling variable t (L~L~~) 't . The value g(t =0)
=0.37+ 0.02 diA'ers from g(t =0) above, due to the S
dependence. I in the form of (10) scales excellently
with r =0 and T, (L ~, L~~) as deduced from gL, as shown
in Fig. 2, which also shows that P,a. = 3 as if m(x)-x' for x ~ and T & T„canceling the L prefactor
for L & —L

~~
~. However, plotting the data as in Fig.

1(b) also shows consistency with P= —,
' for diA'erent S,

but each with a diA'erent curve. Thus, it is likely that P,ff

is an effective exponent describing the crossover to S=0,
since the data may not have sufficiently small 5 to reveal
the asymptotic behavior of m. Here a study of the
geometry ~ xL~~ may be helpful. '

For T, (L&,L~~), L~~ t* fits F(S)—S quite well,
with an extrapolation T, (cc) =1.41~0.01 lying well

outside the previous estimate 1.355+ 0.003 that has
been used in the literature ever since, but is consistent

ensure good statistics. Temperature is in units of T, of
the d=2 Ising model.

I identify the order parameter as

m = —sin ge ' ' Z~ix xii) )
1 . z i2zx /L 1

2 Lg x L II

where o = ~1 is the local spin variable. The prefactor
ensures m=1 at T=O. Compared to (see Ref. 2 for de-
tails) m'=&m~~~) —(m~), where (m~~) and (m&) are the
mean-square magnetization of the column and row, m is
better for two reasons: First, for T & T„ the finite-size
tail m —I/JV is much smaller than I/ML of m' (due to
the squares inside the means); second, m is sensitive to
the spatial distribution of the domains, as an order pa-
rameter should be, whereas m' is not. The generalized
renormalized coupling

is also calculated. ' Above T, the distribution tends to

0.7

0.5-

0.3-

~~=0.1-
I ~

-0.1-
o

-0.3-

-0.5-
T&Tc

-0.7
-2 -1.5

I I I i

-1 -0.5 0 0.5
1 og [ sqrt(V) "(T-Tc(L))/Tc(L) ]

1.5

FIG. 2. For di(ferent small 5, logio(mLil ') vs Iogio[t(L&
xLii) ' 'I [cf. Eq. (10)l for square geometry L xL: L =14 (E),
20 (+), 30 (+), 40 (o), 50 (x), 100 (a); and for L~ xLII.
50x 30 (0), 32x 16 (0 ), 16x 32 (A), 24x48 (v).
T, (L &,L ii)'s are, respectively, 1.371, 1.373, 1.374, 1.375,
1.376, 1.378, 1.345, 1.33, 1.382, and 1.39.
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with my independent estimate from fixed S.
In conclusion, the analysis for fixed S gives strong evi-

dence that the theoretical and simulation models belong
to the same universality class. While such an analysis
relies heavily on exact field-theoretic results which are
not generally available to other anisotropic systems, and
that the proposed small-S behavior is phenomenologica1,
it demonstrates clearly that great care must be taken in

analyzing data for systems with anisotropic scaling in or-
der to obtain the correct exponents.
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