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Critical Phenomena in 3He and 4He at T =0 K
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At a critical negative pressure P, liquid 'He and He become macroscopically unstable. We give a
theory of the critical behavior near P, and show that it is in excellent agreement with experiment.

PACS numbers: 67.20.+k

and the bulk modulus 8 is proportional to V, —V. Con-
sequently, the sound velocity c varies as

c~(V, —V)'"~(P P)'"— (2)

Of course, the sound velocity near P, has not been mea-
sured. However, for positive pressures, extremely accu-

In recent papers' we have shown that at a critical
negative pressure P, liquid helium at zero temperature
becomes macroscopically unstable. At this pressure the
sound velocity goes to zero and the liquid is unstable
against long-wavelength density fluctuations. The pur-
pose of this Letter is to present a simple theory of the
critical exponents at P„and to compare this theory with
the experimental data.

The physical origin of the instability at P, can be un-
derstood on the following basis. For any condensed
phase at zero temperature the energy E depends on the
molar volume V as shown qualitatively in Fig. 1. If a
negative pressure is applied, the molar volume increases.
However, since dE/dV has a finite maximum value at
the inflection point of E vs V, there is an upper limit to
the negative pressure that the system can sustain. At
this pressure P„d E/dV =0 and so the sound velocity
vanishes. Near V„

p p, ~(v —v, )'—

c~(P P, )', — (3)

with v estimated to be between 0.31 and 0.33 for both
He and He. This value of v is significantly diAerent

from the value —,
' obtained in Eq. (2), and this difference

is the topic of this Letter.
For c to have the critical behavior (3) the energy near

V, must go as

E =E,+a~(v, —V)+at(V, —V) t+

where a~ and a~ are constants and

@=2(1—v)/(1 —2v) .

(4)

Thus, to give v& 4, y must be larger than 3 and so E
does not have a simple inflection point.

How can this nonanalytic behavior arise? We suppose
that we can divide the energy of liquid helium into two
terms, a potential-energy term U, which is taken to be an
analytic function of V, and a term E arising from the
zero-point energy. Thus,

rate measurements have been made by Abraham et al.
Analysis of these data by standard techniques' gives
values of P, of about —9 bars for He and —3 bars for
He.

The analysis of the sound velocity also gives the criti-
cal exponent of c. The result is
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FIG. l. Qualitative form of the energy and pressure of a
liquid as a function of volume. At V,. the pressure takes on its
maximum negative value.

E(v) =U(v)+It(v) .

For a given U(V) we can find an approximate It(v) by
first calculating the bulk modulus 8 = Vd U/dV .
Then, we obtain the sound velocity c =(8/p) ', and
next calculate in some approximation the dispersion
curve for the elementary excitations. From this disper-
sion curve we obtain the zero-point energy as the integral
over the spectrum, and then find the energy E from Eq.
(6).

We can view this calculation as one renormalization
cycle. The calculation can now be repeated but using for
the bulk modulus the renormalized value 8=Vd E/
dV . One repeats the cycle until the results do not
change, and then examines how the sound velocity varies
with volume and pressure near the critical point.

To perform this calculation one needs approximate ex-
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pressions for the dispersion relation e(p) and for IC. As a
simple model we take the energy of the liquid per unit
volume to have the form

—,
'

pu + —, B(6p/p) +Xi&pi

where v is the liquid velocity, Bp is a change in density
from the mean density p, and X is a constant coe%cient.
Then the dispersion relation is

e =p (c '+ 2kpp '/6 ') 't'.

The zero-point energy is

+Pm
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where p„, is a momentum cutoft' and y =Ac/p (2kp) '

With this form for K, we have determined the critical be-
havior of the sound velocity. It is straightforward to
show (either analytically or by numerically performing
the iteration process) that near P„

(10)

i.e., v=
3 and @=4. Thus, the effect of the renormal-

ization process is to eliminate from E(V) the term in

(V, —V) that occurs at an ordinary inflection point, and
to leave (V, —V) as the first finite term after the linear
contribution. This result follows from Eq. (6) if one ex-
pands both sides as series in powers of V—:V, —V. U(V)
contains all powers of V, including the square. However,
E cannot have a term in V because then the sound ve-2

locity would not become zero at V, . Thus, in Eq. (6) the
quadratic term in the expansion of U must be balanced
by a quadratic term in K, and so the leading term in the
sound velocity must go as V, —V. This then implies that
y=4

The result (10) is in extremely good agreement with
the experimental data. This is shown in Fig. 2 by means
of a simple plot of c vs P for He and He.

The calculation of the zero-point energy does not
properly take into account short-wavelength excitations,
e.g. , rotons. One can make the spectrum (7) more real-
istic by the addition into (6) of terms involving higher-
order gradients of p, or terms in p, etc. It is straightfor-
ward to show that these terms do not affect the critical
exponents, at least given the assumption that their
coeKcients are nonsingular at the critical point. In addi-
tion, we have implicitly assumed that K is well approxi-
mated by an integral over a spectrum of noninteracting
excitations; i.e., anharmonic effects are included in a
highly simplified way. We plan to discuss these effects in
more detail in a subsequent paper.

If we accept that the variation of c as (P —P, ) 't is

FIG. 2. c' vs pressure (c denotes sound velocity) for 'He
and He. The data are taken from Ref. 3. The theory predicts
a linear relation between c' and P, when P is not too far from
P, . The two straight lines have been drawn to pass through the
first and last data points for He and He.

indeed an indication of a critical phenomenon, it is
surprising that this law holds so well so far from the crit-
ical point. The plots in Fig. 2, for example, extend out to
values of I —V/V, of 0.18 and 0.30 for He and He, re-
spectively. It is clearly unrealistic to try to use the sim-
ple theory we have given here to estimate the extent of
the critical region, or to calculate the size of the leading
correction to the (P P, ) 't behavior-.

It would be very interesting to test the theory by more
accurate experiments. Measurements of c close to P,
would provide the most direct test, but such measure-
ments are extremely dificult to make. A static negative
pressure applied to the liquid will lead to the nucleation
of bubbles within a short time. As far as we can see,
the most promising method for improving the accuracy
of the measured critical exponents would be a more ac-
curate study of the sound velocity in He as a function of
pressure. The data of Ref. 3 give roughly comparable
accuracy for v from He and He. This is because the
He data are about 1 order of magnitude more accurate,

but the He data extend much closer to P, . If sound-
velocity measurements in He could be made of compa-
rable accuracy to those made in He (fractional errors
about ~ 3x10 ), one could probably obtain values for
v accurate to about ~0.001. This would provide a
rigorous test of the theory we have presented here.

In summary, we have given a simple theory of the crit-
ical behavior of liquid helium close to the negative pres-
sure at which it becomes unstable. This theory is in very
good agreement with experimental measurements of the
sound velocity as a function of pressure.
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