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Similarity Laws in Eutectic Growth
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We show that the full boundary integral equation reduces, for small Peclet numbers, to a nonlinear
similarity equation which contains only two dimensionless parameters, cr =dol/X' and g =i/lz. , where do,

l, and lT are the capillary, diA'usion, and thermal lengths and k is the wavelength of the pattern. All

physical quantities should depend on a and g only. This is confirmed by numerically integrating the
original equations. The selected wavelength should scale as k —V 't'f(l/lr) (Vis the velocity). Our re-

sults suggest that X,—V ', where a= 2 for large V and a & —,
' for small V. Our results agree with ex-

periments and we propose further experimental tests.

PACS numbers: 61.50.Cj, 05.70.Fh, 68.70.+w, 81.30.Fb

When eutectics are submitted to directional so-
lidification, the liquid-solid interface forms parallel
lamellae of the two coexisting solid phases. ' Under some
conditions the interface may undergo a parity-breaking
transition: Tilted lamellae appear. We have shown re-
cently that the fully isotropic model of eutectic growth
supports tilted solutions. We found that, for not too
small growth velocities V (lT/1 &4, l and lT being the
diA'usion and thermal lengths), the tilt angle p remains
approximately constant along the line X V=const, where
k is the periodicity. A further prediction was that parity
breaking occurs at a critical velocity V, which approxi-
mately scales as V, —k . On the other hand, various
experiments reported that the selected wavelength, or the
average spacing, scales within experimental precision as
X-V ' . The same scaling holds at the minimum un-

dercooling point in the Jackson and Hunt approxima-
tion. This point has often been suspected to be the
operating point. It is therefore natural to ask whether
the scalings encountered in different contexts can be un-
derstood on the basis of general considerations. The pri-
mary goal of this Letter is to deal with this question.
Indeed, we show that in the experimental range of pa-
rameters where the Peclet number, P =k/l, is much
smaller than unity, the full integral equation reduces to a
similarity equation containing only two dimensionless
parameters a =dol/X and g =l/lT, where do is the capil-
lary length. The similarity is confirmed by numerically
integrating the full integral equation. The dependence

.on g is smooth only for large enough velocities, thus indi-
cating that the relevant parameter in this regime is a.
(=X V). We will see below that for small enough V,

however, the presence of the thermal gradient causes a
departure from the relation X V=const. Such an effect
was observed in many experiments. Indeed, for small
enough V power laws k-V, with 4 & a & —,', were
found. Surprisingly, in most of the literature, essentially
in the 1980's, such results are not mentioned. An impor-
tant result to emerge from our considerations is that the
selected wavelength 1 should scale as X —V ' f(l/lT).
We compute f for the minimum undercooling point for
symmetric solutions. This point is suspected to be the
operating point. If such is the case then our results sug-
gest that the selected wavelength scales as X—V ', with
a= 2 at large V and a decreasing with V at small V.

Our results agree well with experiments and inspire al-
ternative tests. We will also comment on the great pro-
gress offered by the similarity properties in numerical in-

vestigations.
For ease of presentation, our analytical discussion will

be restricted to axisymmetric growth. The extension to
asymmetric lamellae is straightforward. Furthermore,
we assume that do =d(, lT ll'r. This allows our formu-
las to be compact. Since do and lT differ in both phases
by multiplicative constants only, this assumption does
not alter at all the scaling laws.

Our starting point is the integral equation that governs
one-dimensional deformations of the solidification front.
For the one-sided model it can be written as

a[ate(x) +gg(x) 1

2

r

2Y(x')dx' e(x') (2k, —1)[crx(x')+g((x')] — e ~Ko(Pp)2m~- P

p +,Ag —Axe„+ „dx' " e(x') [ate(x')+gg(x'))e P~~K)(Pp) .
P

Lengths are scaled by the wavelength k. e =1,—1 and Y =8,6 —1 for the a,p phase, respectively, where
=(c,—c )/(cp —c,), c„c„ctjbeing the equilibrium concentrations at the eutectic temperature of the coexisting liquid,
the a, and the p phase, respectively. Note that the p phase is the one with the higher concentration.
u =(c —c, )/(cp —c,) measures the departure from the eutectic concentration and k, is the partition coeffi-
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cient for the coexistence of the liquid and the v solid
(v=a, P). The K s are the modified Bessel functions,
ax=x —x', a&=((x) —((x'), and p=(ax'+a&')'".

Pattern formation occurs in standard experiments with
wavelengths X that are much smaller than the diffusion
length l =2D/V. Typically P =X/l —10 . We there-
fore concentrate on this situation. Inspection of Eq. (1)
shows that there are three types of terms. We consider
them in the order of increasing difhculty. Expressions of
the first type vanish in the small-P limit as Pln(P).
Such contributions originate from the terms proportional
to (oK+gg)Ko. The next sort stems from the terms in
the second integral on the right-hand side of Eq. (1).

Using the small-argument expansion of K~ we obtain
order-1 contributions. Finally, the most subtle contribu-
tion comes from f dx'Y(x')Ko(Pp)e ~. The in-
tegrand of this term obviously diverges logarithmically in
the P 0 limit. We circumvent this difhculty as fol-
lows. We add to and subtract from this term the quanti-
ty f Y(x')Ko(~PAx~). The subtraction serves to can-
cel the logarithmic singularity. The added part can be
evaluated exactly by first expanding the periodic func-
tion Y(x') in a Fourier series. The resulting integrals of
the form f dx'e ' ""Ko(~Phx~) are standard and can
be evaluated analytically. Taking now the P 0 limit
we obtain the similarity equation

e(a x+gg) = h (a,g) —— dx'H(x') ln
1, , (x —x') '+ ( — ') '

(x —x') '

+ ~ sin (+nil )cos (2xnx )
n=l n

g
—g'+ (x —x') gdx', , (crx.+gg)Y,

(x —x') '+ (g —g') ' (2)

where g is the volume fraction of the a phase,

sin(zrnq)cos(2rrnx) + +H(xj = ~ +@+5 —1,
n= 1

and h (cr,g) = (u + rl+ 6 —1)/P. The latter quantity
which appears to be of order 1/P is in fact of order unity.
Indeed we can show from the mass conservation law on

the global scale that

t

1

u +ii+6 —1=P dxk, (x)e(x)[ax(x)+gg(x)l. (3)

This equation is obtained by integrating the local mass
conservation equation over a surface (this is a volume

per unit length in the y direction since we consider only
one-dimensional deformations) bounded by the following
contour: a segment parallel to the x axis lying at z =~
and having a length X, and a boundary of extent X along
the interface on the solid side. To close the contour the
ends of these two boundaries are joined by two segments
parallel to the z axis. Note that to leading order in an

expansion in the Peclet number we can set, in the in-

tegration boundaries, ri = I —u —8, so that (u + q
+6 —1)/P=h (a,g), which is a function of a and g only.
We should mention that in deriving Eq. (2) we have used

the fact that since interface excursions are limited to one
wavelength at most, the quantity hg= 1 (in units of X).

Equation (2) constitutes the similarity equation which

contains only two dimensionless parameters a =dol/X
=2Ddo/X V and g=l/lT=2DG/Vm(cp —c,), where G

is the applied thermal gradient and I is the absolute
value of the liquidus slope. The similarity equation im-

plies that the physical quantities, in particular the pat-
tern, are self-similar under a simultaneous stretching (or
shrinkage) of )i, and of (V,G) by a and a, respectively,
where a is an arbitrary real number.

%'e have tested our results numerically. The numeri-
cal procedure was presented in recent work. For

definiteness, we have used the material parameters for
the CBr4-C2C16 material which are detailed in Table I of
Ref. 3. Figure 1 shows the dependence of the position in

the z direction of the triple point along the line
(cr,g) =const, compared to that obtained when only o is
kept constant (this means X —V 'l ). The same has
been done for the tilt angle of asymmetric solutions
(Fig. 2). It is clear that these physical quantities are
functions of o and g only. Already from Fig. 2 we ob-
serve that the hitherto suspected scaling, according to
which X—V ', is accurate only at sufficiently large V
(when lT is appreciably larger than l). When V is small
a deviation from the exponent —,

' is noticed. We can
even go farther just by looking at Fig. 2: At small V the
exponent a (with the proviso that a simple algebraic law

holds) should be smaller than one-half. This idea is

motivated by first noticing that p increases with growing
V at small V when only the product X V is kept constant,
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FIG. l. The triple-point position as a function of the growth

velocity. Squares: at fixed (a,g). Triangles: at fixed (o,!T)
(see text).
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FIG. 2. The tilt angle as a function of the growth velocity.
Squares: at fixed (rr, g). Triangles: at fixed (o., lr) (see text). FIG. 3. The dependence of kV+' ' on the growth velocity.

and second, that p is expected to decrease when the
thermal gradient increases. The last point can be under-
stood by noting that an increase in p implies an increas-
ing distortion of the interface of (mainly) the thinner
lamella. This implies excursions of the interface towards
the hot thermal contact. The thermal gradient always
acts against such a tendency. To complete our argument
we mention that thanks to the similarity property, and
when o is kept constant, a decrease in V implies a varia-
tion of the parameter g which is equivalent to an in-
crease by the same amount in the thermal gradient.
More results regarding the similarity properties will be
given in a forthcoming publication.

An important consequence of the similarity equation
(2) is that the wavelength of the pattern X should scale
as

(4)

It does not matter ho~ the wavelength selection mecha-
nism operates. Our result follows from dimensional con-
siderations only. At this stage Eq. (4) does not tell us

what the behavior of the selected wavelength (if any) is.
It simply gives the form of the scaling law. We need ad-
ditional information to determine f. We have computed

f at the minimum undercooling point. This point has
conventionally been assumed in the metallurgical litera-
ture to locate the operating point; and the resulting pre-
dictions seem to be in good agreement with experiments.

From our calculation we conclude that f is an increas-
ing function of V and saturates at large V. Our results
suggest that the selected wavelength follows this scaling.
Using the computed f we obtain the dependence of the
wavelength as a function of the velocity. Figure 3 shows
this behavior. More precisely Fig. 3 shows the depen-
dence of A, Vas a function of V. At large Vthis quantity
is approximately constant. However, as V decreases a
deviation from the conventional law (X-V '~ ) is no-
ticed. At small V the wavelength is definitely smaller
than what is predicted from the Jackson-Hunt theory.

Or, in other words, we can say that k in this regime can
be represented by A, —V ', where a(V) ( —,'. It is
understood that algebraic laws of this type constitute
only reasonable fits within a precision (about 1%-5%)
beyond experimental resolution.

Our results are in good agreement with diAerent ex-
perimental findings. Indeed careful experimental investi-
gations have shown that the law k —V ' holds only at
sufticiently large velocities. At small velocities, however,
X is observed to scale as V with a=0.3-0.35. We
propose an additional experimental test: In those materi-
als where it has been possible to explore the small-V re-
gime it would be interesting to investigate the wave-
length selection (or the average lamella spacing) by
keeping the ratio of the pulling speed to the thermal gra-
dient constant. Indeed our scaling law [Eq. (4)] implies
that in that case A. —V with a=0.5 instead of 0.3 in
the whole range of velocities since f is constant. This is
a rather large difference which can, in our opinion, easily
be detected.

Before concluding we would like to point out the great
progress offered by the similarity properties in numerical
investigations. As the velocity decreases (the diffusion
length increases) the range of interaction between lamel-
lae becomes longer and longer. This means that the
efIIective size of the interface increases, thereby increas-
ing the computing time by the square of the same factor.
However, thanks to the similarity equation, decreasing V
by a certain factor is equivalent to a simultaneous multi-
plication of the capillary length and the thermal length
by the same factor. As these lengths enter the local dy-
namics only, they do not aAect the efrective size of the
interface. This procedure constitutes a considerable sav-
ings of computing time.

In summary, we have shown using the boundary in-
tegral formulation that the interface equation reduces to
a similarity equation in the small-Peclet-number limit.
This limit is relevant to experiments. The similarity
properties are confirmed numerically. We have given a
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general form for the scaling of the wavelength of the pat-
tern. We have found that only for large enough veloci-
ties is the law A, —V ' valid. For small velocities we
found k —V ', where a & 2 . This agrees with exper-
iments on metallic eutectics. The general analysis
presented here indicates that if the ratio of the thermal
gradient 6 to the pulling velocity V is kept constant in an
experiment, the wavelength should scale as X—V
Therefore, performing experiments with a fixed 6/ V for
those materials for which an exponent of about
0.3-0.35 has been observed at a given 6 would constitute
an important experimental test of our results. This work
is also a call for careful experiments on transparent eu-
tectics in the small-velocity regime.
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