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Growth-Induced Roughening of Crystalline Facets
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The dynamic roughening of a growing crystalline facet is reexamined by including nonlinear effects.
A new and unusual fixed point controls the crossover between rough and faceted growth. Unlike linear
treatments, the dynamics is no longer diffusive, and an anomalous decrease in mobility is predicted. Im-
plications of these results for recent numerical simulations of growth and experiments on He films are

discussed.
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Crystalline facets in equilibrium undergo a roughening
transition:' Smooth facets exist at low temperatures and
become rough at higher temperatures. In many cases
one is interested in the morphology of a growing inter-
face. 1t is therefore important to examine the dynamic
(nonequilibrium) analog of the equilibrium roughening
transition (ERT). Chui and Weeks? (CW) studied the
linear response of a crystalline interface to a small driv-
ing force. They found a transition in mobility from ac-
tivated growth (by formation of steps) in the flat phase
to nonactivated growth at high temperatures. In fact,
nucleation of steps and islands destroys the flat interface,
so that a sufficiently large facet is roughened by any
small chemical potential favoring growth. This is clearly
seen from numerical simulations, and analytical argu-
ments,® applied to polynuclear growth models. A de-
tailed explanation of the resulting crossover behavior
near the ERT, and its application to observations of
roughening*® on “He, is provided by Noziéres and Gal-
let (NG). Both CW and NG conclude that, at the ERT,
the dynamics is ‘“‘conventional,” in that the mobility
stays finite.

In the linearized models of CW and NG, the rough-
ness of the growing interface is similar to a static one,
i.e., described by capillary modes, and characterized by
logarithmic growth of height fluctuations. However, ex-
tensive numerical simulations of various growth models
over the past few years® have established that nonequili-
brium effects introduce a relevant nonlinearity’ which
leads to anomalous power-law growth of height fluctua-
tions. Recently, a number of investigators have looked
for a phase transition (possibly the dynamic analog of
ERT) in growth models.®"'> Perhaps the most convinc-
ing is the work of Amar and Family® (AF), who find evi-
dence for a temperature interval in which the algebraic
increase in height fluctuations is replaced by a logarith-
mic one. This transition has been attributed to an ac-
cidental vanishing of the nonlinear term in the growth
equation.'® Curiously, the nonlinearity vanishes close to
where ERT is expected.

Lattice effects may play a significant role in these
simulations. We also expect growth-induced nonlineari-
ties to be important in experiments on “He. We thus

generalize the studies of CW and NG to include both
lattice effects and nonlinearities. The resulting crossover
phenomena in the vicinity of the ERT are now controlled
by a new and unusual fixed point. Although the lattice
effect is renormalized to zero at high temperatures, it
persists long enough in the vicinity of ERT to signifi-
cantly diminish the effective nonlinearity, so that height
correlations at the transition point are logarithmic, as in
ERT. However, the dynamics is no longer conventional,
and an anomalous decrease in mobility is predicted. Un-
like linear treatments which predict a discontinuous
jump in the mobility, we find that it vanishes continuous-
ly at the transition. The mobility u can be measured in-
directly from the angular dependence of the growth ve-
locity, v(8) —v(0) ~ 62, for small angles.

We describe the interface by its height A (x,¢) at time
t, above the position x. The simplest local equation
describing the evolution of 4 is

u —‘—3—]: =F+vV2h —ysin(2zh)

+ $A(Vh) 2+ n(x,1) . 1)

Here p is the microscopic mobility of the interface, and
F is the driving force proportional to the chemical poten-
tial difference. If only the first term is considered, the
interface simply moves at a constant velocity v=uF.
The second term describes the smoothening effect of sur-
face tension, and the third term mimics a crystalline po-
tential that prefers integer values of A. Thus 4 is mea-
sured in units of the lattice spacing normal to the sur-
face. The latter two terms are obtained from variations
of the sine-Gordon Hamiltonian'> which describes the
ERT. The fourth term is due to nonequilibrium ef-
fects,” and vanishes when the surface is stationary. (It
may also vanish accidentally at isolated points.’) Final-
ly, n is a random function describing thermal and growth
fluctuations. We consider uncorrelated noise with

(nx,)nx,t'))=2D6*(x—x")6(t —1¢') .

Note that this analysis does not include nonlocal effects
such as competitive shadowing or screening, so that this
model applies specifically to cases of liquid or vapor
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deposition where the overall surface morphology does not
affect the local deposition rate.

Two limits of the above equation are well known: For
a stationary interface, A =F =0, Eq. (1) is the Langevin
equation for the sine-Gordon problem.'® It describes the
equilibrium roughening transition' which is dual? to the
Kosterlitz-Thouless (KT) transition.'® CW and NG ob-
serve that the dynamics is conventional, in that on ap-
proaching the transition from the rough side the mobility
u stays finite, and drops to zero only in the flat phase.
With F0, nucleation and growth of steps leads to a
small, activated mobility for the flat phase.®> Once the
interface acquires a finite velocity v(F), the lattice po-
tential in Eq. (1) averages to zero* over a time scale
t~1/v(F). For longer times the interface is rough, and
the true roughening transition is destroyed by a finite
force F. However, in many situations (e.g., molecular-
beam epitaxy) the characteristic size of facets before
roughening becomes evident can be macroscopically
large, giving the appearance of a sharp transition from
amorphous to layer-by-layer growth. The other limit of
Eq. (1) with y=0 and A,F0 describes the dynamic
fluctuations of a growing interface.” The nonlinearity
changes the logarithmic increase of height fluctuations to
algebraic.®

Crossover between rough and flat growth, as calculat-
ed by CW and NG, is governed by the dynamics of the
sine-Gordon equation. We include nonlinear effects in a
dynamic renormalization-group (RG) approach by sim-
ply adding up the recursion relations obtained in the
above two limits*’ in the vicinity of ERT (y=1=0,
uD/v=2/x). Under a change of scale, x— e'x, t
— et h— b, the parameters in Eq. (1) renormalize as

dinD _ _A? y? dlny D y?
S = + =2 -+ ,
dl 4r2y? ‘! v dl 2 14 € v?

)
dink _ dlnv _ y? ding __ p?
il dl Tyl by

Formally, Egs. (2) are obtained by treating y and A per-
turbatively, and including all terms to second order. For
y =0, the only O(A2) correction is to D, which signals
the marginal relevance’ of A. Terms proportional to Ay
are excluded by symmetry of Eq. (1) under y— —y or
A— —A. Although O(y?) corrections depend somewhat
on the precise RG scheme, the flow diagram is only sen-
sitive to relative values of these coefficients at ERT. We
use ¢} = 4.6, c; = 1.9 from NG, and c3=5/4r from Ref.
15. Two new terms could have arisen, at O(12) to y, and
at O(y?) to A, but we calculate both to be zero.

Finally, the recursion relation dF/dl =2F+ nA indi-
cates that a finite F is always relevant, and ultimately
averages y to zero at sufficiently long length scales. NG
use a “stopped RG” procedure in which y is simply set to
zero at this scale. Following NG, we focus on the behav-
ior of Egs. (2) only at smaller distances. We examine
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the RG flows near the ERT point by setting ¢ =2zuD/
v—4, )7=2_(cz)'/2y/v, and A =A/zv. Then to lowest or-
der in (¢,y,1), we have

= — dy? — _ dr’? =_
—1=k2—y2, _'1L=—y2[t+ﬁy2], ; __ax2y2’
3

with a=0.5 and B==0.4. For y =0 and finite X, the tem-
peraturelike variable t = T — T, goes to infinity indicat-
ing relevance of the nonlinearity. For X =0, we have the
usual KT equations,'® with a phase transition governed
by the fixed point at z =y =0.

The new feature in Egs. (3) is that a finite lattice po-
tential (5 >0) diminishes the effective nonlinearity
X~A/v. The origin of this effect is that the lattice poten-
tial tends to stabilize the surface by increasing v [see
Egs. (2)1. In the three-parameter space (¢,y,1), a
two-dimensional separatrix, y>=A’+y(r+By°—ak?)
+0(G*), actually flows to the ERT fixed point (r=j
=X=0). This is quite surprising since the fixed line at
y=AX=0is unstable for 1 <0 to y and to A for all z. On
the high-temperature side of the boundary, y itself is
rapidly driven to zero, while A persists, so that RG flows
g0 to a sink at t— oo, 3 =0 (rough). On the other side,
the opposite occurs and flows go to t— — oo, A =0 (flat).
Flows starting on the separatrix rapidly (i.e., exponen-
tially) decay towards a special line, the “spine,” given to
lowest order by X2=p?=¢/(a — ). Along the spine, y
decreases just slowly enough to drive A to zero as
A2=3p2=53/(apdl+1) (5o is the value of 7 as the RG
trajectory approaches the spine). Asymptotically
72~1/l, as compared to j~1// along the usual KT
separatrix. Since dlnu/dl~ — 72, this slow convergence
of y to zero causes the mobility u to vanish at the transi-
tion. Also the true asymptotic behavior does not occur
immediately, but is preceded by a long interval in which
y (1) is approximately constant.

Figure 1| indicates how the roughening transition tem-
perature (for a fixed initial y) is modified by A [for small
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FIG. 1. The decrease in the roughening transition tempera-
ture with increasing A. The horizontal lines indicate the paths
used in Fig. 2.
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X, not apparent in Fig. 1, T.(X) — T.(0) ~X?]. Figure 2
shows the renormalized mobility [the /— oo limit of
1 ()] as a function of temperature for selected values of
A. The discontinuous jump>* for X =0 is replaced by a
continuous approach to zero, which becomes more ap-
parent at larger . Also included in Fig. 2 is the renor-
malized value of A, which vanishes at the transition.
Asymptotically close to 7., the correlation length &
diverges as Iné~ (In|T —T.|)2. However, in numerical-
ly integrating Egs. (3) we found that the true asymptotic
behavior is observed only at very small reduced tempera-
tures |7 — T.| = exp(1/v/aj,). This follows from j (/)2
=53/(apdl+1), since the asymptotic limit y2~1/al is
observed only for / > 1/aj{. For higher reduced temper-
atures, there is an apparent nonuniversal divergence,
E~|T—T,| ~% The dynamic crossover length be-
tween these two regimes, &4qyvn, i1s much larger than the
corresponding static crossover length &. In fact, &qyn
~ E4°* which may be astronomically large in realistic
cases, rendering the observation of true criticality impos-
sible. The renormalized parameters in Eq. (1) have non-
analytic dependences on In|7 — TCJ’ so that, for example,
u vanishes as g~ (In|T—T.|) ~**® and v diverges as
v~(n|T —T.|)"2*. At T., the height-height correla-
tion function is

C(L,7) =(lh(x,t) —h(x',t)]%

_2 :
~ 2 M| gy e | @

with a similar expression for the surface width (L =|x
—x'|, =t —7'|, and the scaling function g has the usu-
al limits).'? The static behavior is thus unchanged from
the usual roughening transition,' while there are loga-
rithmic corrections to the diffusive behavior predicted by
conventional dynamics. >*!?

In d=2+¢ dimensions, the recursion relations are
modified simply by the addition of —& [ —4¢] to the first
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FIG. 2. The renormalized mobility and A for the tempera-
ture scans indicated in Fig. 1.

equation in (2) [(3)]. For £<0, the phase boundary is
controlled by a fixed point at y =2+/—¢, XA =¢ =0. Since
X is irrelevant at this fixed point, the analysis of the stat-
ic roughening transition (dual to the Coulomb gas'?) ap-
plies. At O(N—¢), E~1 7", where v=1/2v/—¢, and
C(L,7)=(2/x?)InL g(z/L?) at the transition, with z =2
+e&(cy;—c1)/ca. For €>0, a line of critical points ap-
pears at A =2, =0, r=0. Since the O(X?) correc-
tion to v in d =2 vanishes, z =2, and to lowest order the
height-height correlation function decays logarithmically
at T., but with a nonuniversal prefactor, i.e., c¢(L,7)
=(1/aKex) InL g(t/L?). This form was actually sug-
gested for d = 2 by the numerical simulations of Forrest
and Tang'? (FT) in three dimensions (¢=1). For the
conjecture to be generally valid, all higher-order correc-
tions to z must vanish. Since lattice effects are present in
most numerical simulations,'®!>!? and are immediately
relevant upon entering the flat phase, the results should
be interpreted accordingly. For example, FT observe'?
the onset of sublattice ordering below the transition,
which is probably a lattice effect. They also note that
the equilibrium width approaches its asymptotic value
with a 1/L correction, though such a correction is cut off
by lattice effects.

We now discuss the broader implications of our results
on numerical simulations of kinetic phase transitions,
and the extent to which these transitions are related to
ERT. The sharp morphological transition we have dis-
cussed blurs once the average motion of the interface is
included, so that the transitions observed in d =2 in a
number of recent simulations'®!"!3 are probably cross-
over remnants. As a “temperaturelike” control parame-
ter is varied in the simulations, the coefficients v, A, y,
and D in Eq. (1) change, so that their trajectory, prob-
ably, crosses the effective phase boundary discussed
above. To better observe the predicted crossover phe-
nomena, an independent “forcelike” parameter control-
ling the average velocity is useful. Crossover effects
should become more pronounced as this parameter is re-
duced. Furthermore, by setting the forcelike parameter
to zero, one can probe ERT by varying the temperature-
like variable. Thus, using both controls, a continuous se-
quence of nonequilibrium roughening transitions ter-
minating at ERT can be obtained.

The work of Guo, Grossman, and Grant!' (GGG)
most closely relates to this theory since by setting their
bias A, to zero, ERT is recovered. In the case of FT,
pt —p~ is the forcelike term, but an independent tem-
peraturelike parameter is needed to see ERT. Since a
signature of our predictions is an anomalous decrease in
mobility, Ref. 13 is of particular interest. There, a new
quantity, the compacity, which is proportional to the mo-
bility, is found to exhibit singular behavior at the transi-
tion. It is important to note that in some simulations,
the time axis is measured as the average height, which
automatically scales out the mobility. Time measured in

443



VOLUME 66, NUMBER 4

PHYSICAL REVIEW LETTERS

28 JANUARY 1991

units of trial updating steps, for example, is probably
more realistic, and pertinent to our work. The model
used by Amar and Family® is somewhat different in that
the parameter A in Eq. (1) has opposite signs at high and
low temperatures,'* and must vanish at some point.
Since A is not renormalized, this signals a true morpho-
logical transition, even in the presence of a finite force.
However, since the critical surface is symmetric for the
effective nonlinearity A— —2X, which is renormalized, it
is possible that the trajectory of their scans crosses the
phase boundary twice, rather than once. That is, on
scanning A from positive to negative values, a closed in-
terval, intervening between two rough phases and sur-
rounding A =0, exists where the mobility vanishes and
the surface is flat. In fact, rather than occurring at an
isolated point, the transition in AF appears to spread
over an interval in temperature. However, more simula-
tions are clearly necessary to clarify the above interpre-
tations. Finally, although some simulations suggest that
roughness exponents differ across the kinetic roughening
transition, we note that on the flat side of the transition,
characteristic length scales are quite large,® so that
finite-size effects may lead to the appearance of a chang-
ing exponent.

Experimental data on the roughening transition of
growing *He surfaces® have been fitted* by crossover
forms obtained from Egs. (2) with A=0. We suspect
that including the effects of a finite A in the “stopped
RG” scheme of NG would improve the accuracy of these
fits. A more complete calculation of crossover curves for
mobility and A will be left for the future. In our nota-
tion, the quantity Au can be determined from the depen-
dence of the growth velocity on angle,'* or from the par-
abolic shape of the growing crystals. Recent experi-
ments'® indicate that addition of very small concentra-
tions of *He has dramatic effects on the roughening tran-
sition, and leads to pronounced irreversibility in growth
and melting shapes. A macroscopic interpretation of this
phenomenon could be an increased coefficient A in Eq.
(1). This system could thus provide a fruitful experi-
mental ground for testing the above predictions for
growth-induced roughening.
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