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A simple generalization of a continuum model of fluctuating membranes is considered in which one al-
lows the existence of holes as structural defects. The proposed phase diagram of such systems includes,
in particular, a variety of “sponge” phases now exhibiting edges in the form of closed loops or infinite
lines. We show that the simplest theory describing the transitions between these phases is identical to
the lattice gauge theory for a Z, Higgs system. We suggest, therefore, that sponge phases of amphiphil-
ic films could form experimental models to check some of the nontrivial predictions of lattice gauge

theories.
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Membranes built of bilayers of amphiphilic molecules
can form a large variety of structures in aqueous solu-
tions.! Some of them, such as lamellar or cubic phases
of lyotropic liquid crystals,? are ordered, but many oth-
ers present a random, disordered aspect. Among the
most fascinating random structures are the so-called
sponge phases in which the membranes divide the sol-
vent into two interpenetrating continuous regions.3™
Such “bicontinuous” equilibrium structures have indeed
been observed, and are now being intensively studied,
e.g., in anomalous flow-birefringent isotropic (L3) phases
of some dilute surfactant solutions.® From the point of
view of the theory of random surfaces the bicontinuous
structures present the possibility of an unusual phase
transition in which the symmetry between the two sides
of the surface is spontaneously broken.* This “sym-
metric-sponge”’-‘‘asymmetric-sponge” transition, first
postulated’ and studied>? theoretically, seems to be now
observed experimentally in L3 phases.®

The symmetry between the two sides of a bilayer
membrane is the geometrical symmetry of the phenome-
nological random surface Hamiltonian, which for a
noninterating membrane system can be written as*

7{0=de00+§—on2+;?01(), (1)

where the integral is over a self-avoiding surface of un-
constrained topology and total area, H and K are the
mean and the Gaussian curvature at a given point of the
surface, ro is the chemical potential of membrane mole-
cules, and ko and K are rigidity coefficients. The geome-
trical symmetry between the two sides of the membranes
is expressed here through the absence of the so-called
‘“spontaneous-curvature’” term, linear in H. An impor-
tant assumption underlying this Hamiltonian (1) is that
the membrane has no edges. Indeed, if one allows, for
instance, the presence of holes in the membranes, the
very concept of the bicontinuous phase has to break
down at some point. The possibility of the existence of
holes and edges is not unrealistic, 10 since the line tension
of an edge can be lowered by adding small amphiphilic
impurities into the membrane or by changing the salinity

of the aqueous solvent. In this Letter we present a
theoretical study of the thermodynamical behavior of
membrane systems with edges permitted. We argue, in
particular, that allowing holes and edges strongly
modifies the behavior of sponge phases.

The main conclusions of our study are summarized in
a schematic phase diagram presented in Fig. 1, where
B=1/kpT. For the sake of simplicity we have supposed
here that the Gaussian rigidity of the membranes, &y, is
zero'' and have described the membranes at length

e P T T T
B 05 7
“L  CONFINEMENT Lot
e ]
0kl b
I UNCONFINED

e e
x
3
n

NEMATIC
with
FREE EDGES

NEMATIC
with
LINE

TENSION

SYMMETRIC

SMECTIC SPONGE

(lamellar)

0 Bro
FIG. 1. Proposed schematic phase diagram for the mem-
brane Hamiltonian % [Egs. (1) and (2) with the Gaussian-
curvature term neglected]. The dashed lines correspond to
geometric (percolation) transitions, while the solid lines show
the thermodynamic phase transitions. The order of each phase
transition and even the very existence of some phases (such as
the nematics) in general depends on details of the model. The
properties of the various phases are described in the text. The
ro> 0 part of the phase diagram with the sponge phases corre-
sponds to the phase diagram of the Z, gauge-Higgs model
shown in the inset (based on numerical simulations of Ref. 16).
Notice that this diagram is self-dual. (In the inset the self-
dual line is shown dotted, the continuous-phase-transition lines
are dashed, and the first-order-transition lines are solid.) In
particular, the Ising transition on the horizontal axis has its

dual equivalent for the pure gauge model on the vertical axis.
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scales larger than the persistence length a~¢&x (which
means that we integrate the thermal fluctuations up to
this scale so that the effective rigidity « is of the order of
kgT).* In order to take into account the possibility of
free edges we have added an extra term to the Hamil-
tonian, # =%+ #,, with

7 =no [ dl, @

where the integral is over all edges and A is the chemical
potential, per unit length, of the edges “living” on the
surfaces. For infinite Ao, edges are forbidden and one ex-
pects the structures described previously:*® Under in-
creasing ro lamellar smectic and nematic phases trans-
form themselves into symmetric (tensionless or ‘re-
laxed”*) and asymmetric (tense*) sponges and finally
become an ensemble of closed vesicles. It is quite possi-
ble that some of the intermediate nematic or sponge
phases may not occur in many systems, instead being
bypassed by first-order phase transitions. Here we will
assume, as was done in Ref. 4, that all the transitions are
continuous where possible and only weakly first order
otherwise, so all possible regimes are present. Whether
or not all the regimes shown in Fig. 1 can occur in one
system is an interesting question. The nematic and
smectic phases have long-range order in the orientation
of the surfaces; the smectic phase also has quasi-long-
range positional order.* Here we call a phase a
“sponge” phase when it (i) does not have long-range
orientational order and (ii) does have an infinite connect-
ed piece of surface present. For infinite A the distinction
between the symmetric- and asymmetric-sponge phases
is that in the latter the symmetry between the two sides
of the surface is spontaneously broken, while it is
preserved in the former. Also, the macroscopic (fully re-
normalized) surface tension r is positive in the
asymmetric-sponge phase while it vanishes in the sym-
metric sponge.

When Ly is finite, edges are allowed and these two dis-
tinctions between the sponge phases become invalid.
First, the bulk regions can no longer be unambiguously
identified as being on one or the other side of the surface
since the two sides are continuously connected around
the edges. Second, a positive macroscopic surface ten-
sion can no longer be defined: If one tries to force such a
surface across a macroscopic system to measure its ten-
sion, the system will lower its free energy by putting a
macroscopic hole in the surface. However, a thermo-
dynamic distinction between the symmetric- and
asymmetric-sponge phases may now be made by examin-
ing the (fully renormalized) line tension A of an edge.

One may (theoretically) measure A by forcing in an
edge as illustrated in Fig. 2(a). Points B and C are a
distance / apart along the straight-line segment BC. An
edge is constrained to lie on the curve BC going indirect-
ly from B to C which is of length L. The loop produced
by BC and BC lies in a plane on which it encloses area A.
The excess free energy of this constrained system over
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FIG. 2. A theoretical construction defining the macroscopic
line tension of an edge, A (see text). An edge is constrained to
lie along the bold line, which we call BC. In the symmetric-
sponge phase the edge will return from B to C very close to the
straight line, as in (a). In the asymmetric-sponge and
vesicles-and-discs regimes, on the other hand, the edge will be
“slaved” by the surface and will follow closely the longer path
BC in order to minimize the area of the spanning surface, as in

(b).

one without the constraint is AF =~rA+AL+Al, for
large / and A at least of order /2. A is the free energy
cost per unit length of imposing the constraint along BC.
Let us consider how the edge returns— along a different
path—from B to C. In the asymmetric-sponge regime,
for large but finite Ao (as well as in the regime of “vesi-
cles and discs,” see below) it returns along a path very
close to BC in order to avoid making extra surface, as
shown in Fig. 2(b). This happens even though the mac-
roscopic surface tension r, as defined above, is formally
equal to zero. It is, in some way that we have so far
failed to make precise, a “reminiscence effect” of the
fact that for infinite Ao the asymmetric sponge has r > 0.
Thus, in this regime the edges are “slaved” to the sur-
faces and the line tension as defined above is also for-
mally zero. In the symmetric-sponge phase, on the other
hand, the edge may return along the shortest path,
namely, BC, because creating the spanning surface of
area A does not cost any free energy and is not avoided
by the system. The line tension, defined above, is posi-
tive for some range of ro and Ag. We will call the sponge
phase with positive line tension the symmetric sponge.
There are three regimes in our phase diagram, namely,
the vesicles-and-discs, sponge-with-free-edges, and
asymmetric-sponge regimes; all are thermodynamically
disordered, meaning they have no long-range order and
surface and line tensions are, formally, zero. We may,
however, make distinctions among these regimes based
on the connectivity of the edge and surface configura-
tions. Let us start at large ro and Ao where one finds
only finite sheets of membrane in the form of closed (in
general nonspherical) vesicles or (in general, nonflat and
noncircular) “discs” with edges. As rg is then decreased
at sufficiently large Ao, an infinite piece of connected
(percolating) surface appears, although the loops of edge
remain finite; this is, in fact, the asymmetric-sponge re-
gime. Again, because of the reminiscence effect the
edges appear only in the form of finite loops (although
the line tension A is formally zero) in order to avoid
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forming an infinite spanning surface. However, at small
enough A this effect is overcome by the entropy gain due
to letting the edges proliferate. This results in the
sponge-with-free-edges regime, which has infinite loops
of edge present; since the surface must be attached to
these edges, and infinite piece of surface must also be
present. This regime can be entered directly from the
vesicles-and-discs regime at large r, where the prolifera-
tion of edges forces the existence of an infinite,
“seaweedlike” surface, or it may be entered directly
from the asymmetric- or symmetric-sponge regimes,
where an infinite connected piece of surface is already
present. A plausible picture of the edge configurations in
this sponge-with-free-edges regime is obtained by view-
ing the edges as a melt of ring polymers of arbitrary
length. Then an individual edge performs a Gaussian
random walk at long lengths and therefore has a nonzero
probability of never closing on itself. Since an individual
walk is not space filling, there must be an infinite number
of infinitely long edges. However, two different such
infinitely long edges will pass near each other infinitely
many times, so the surface attached to one edge will al-
most certainly be connected with the surface attached to
the other edge and we expect only one infinite piece of
connected surface to be present.

The remaining three possible phases shown in Fig. 1
are the smectic (lamellar), the nematic with positive line
tension, and the nematic with free edges (zero line ten-
sion). In contrast to sponge phases they are all orienta-
tionally ordered. Since the edges are dislocations of the
smectic order, free edges necessarily destroy the smectic
order, so only the nematic can exist when the line tension
of an edge vanishes.

We show below that the part of the phase diagram in
Fig. 1 involving the sponge phases is in fact equivalent to
the phase diagram of the Z, gauge-Higgs system.'? This
simplest lattice-gauge-theory model, first introduced as a
generalization of the Ising model,'* was intensively stud-
ied in particle physics in order to understand the
phenomenon of confinement.'? In particular, the self-
dual, three-dimensional version of this model was studied
through mean-field methods, '>'4 perturbative tech-
niques,'> and numerical simulations.'® The resulting
phase diagram is shown in the inset of Fig. 1. It includes
three distinct regions: (i) a region in which series expan-
sion in the gauge coupling shows confinement (con-
finement region); (ii) a region where there is no
confinement (unconfined region), separated from (i) for
small Higgs couplings through a continuous Ising-like
transition;'> and (iii) a region where for continuous
gauge groups the Higgs mechanism would take place
(Higgs region). It was shown!” that for this discrete Z,
gauge group this region is in fact continuously connected
to the confinement region by an analyticity domain with
no thermodynamic singularities or phase transitions.
These three regions correspond to the three sponge
phases described above; namely, the symmetric-sponge

phase corresponds to the unconfined phase, the sponge
with free edges to the confinement region, whereas the
asymmetric-sponge and vesicles-and-discs regimes corre-
spond to the Higgs region. Of course, since the theory is
self-dual, the Higgs and confinement regimes may be ex-
changed in this correspondence; e.g., in Ref. 8 the
symmetric-to-asymmetric-sponge phase transition at
infinite A is mapped onto a pure gauge theory.

The connection between random surfaces with edges
and Z, Higgs lattice gauge theory is demonstrated by
considering random surfaces on a lattice.'® Thus, let us
consider a random surface living on the plaquettes of a
simple cubic lattice; the edges of the surface lie on the
links of the lattice. Label the elementary cubes (bound-
ed by six plaquettes) with indices i. Put Ising matter
fields o; = £ 1 in each elementary cube and Ising gauge
fields U;;==*1 on each plaquette. The plaquette
separating cubes i and j is denoted ij. Plaquette ij is oc-
cupied by the surface if o;U;;06;=—1. The link shared
by cubes i, j, k, and / has an edge on it if an odd number
of the four adjacent plaquettes are occupied by the sur-

face so that U;;U Uy U;; = — 1. The appropriate action
in terms of these fields is then
= _ﬂr()ZO'[UjjO'j —Bro X, UjU U Ui (3)
T (ijkl)

where the sums run over all plaquettes and links, respec-
tively. Because of the gauge invariance of (3), each dis-
tinct configuration of surface plaquettes and edges is rep-
resented by precisely 27 gauge-equivalent configurations
of the matter and gauge fields, where N is the number of
cubes in the system. Thus the mapping from the lattice
gauge theory to the surface-and-edge model is many to
one, with a multiplicity independent of the configuration.
For infinite Xy the gauge may be fixed so that all the
gauge fields are equal to +1, resulting in the usual fer-
romagnetic Ising model for the matter fields. This, of
course, has a critical point as rg is varied, which is the
symmetric-to-asymmetric-sponge transition. The lattice
theory is self-dual and this Ising-model line at infinite A
is mapped onto the pure gauge line 7o =0 under duality.
Thus the phase transition, as A¢ is decreased at fixed
ro=0, from the symmetric-sponge phase to the sponge
with free edges is also a critical transition in the Ising
universality class. Monte Carlo simulations of the Z,
Higgs system on the simple cubic lattice showed'® that
these Ising critical transitions become of first order when
one is fairly near the triple point where the symmetric-
sponge, asymmetric-sponge, and sponge-with-free-edges
phases meet, as shown in the inset of Fig. 1. Similarly, a
line of first-order phase transitions between the asym-
metric sponge and the sponge with free edges extends out
from the triple point along the self-dual line, terminating
in a critical point beyond which there is no thermo-
dynamic phase transition separating these two regimes.
It is an interesting question whether these transitions are
always of first order near the triple point. It may be that
on another lattice or with other further-neighbor interac-
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tions the first-order transitions could be absent. Then
the two Ising critical lines would meet at some sort of
multicritical point, perhaps XY universality class. Note
that the model, as introduced above on a simple cubic
lattice, does permit “seam” defects (i.e., three occupied
plaquettes that share one link) with the same local ener-
gy as simple edge defects. It also allows a limited set of
other self-intersections (e.g., four occupied plaquettes
sharing a link) at no energy cost. However, by adding
additional local terms to the action (3) and/or using oth-
er lattices® one could easily generalize the model to allow
these various defects to have independent energies. Of
course, such terms will generally disrupt the precise
self-duality of the above lattice model (3).

In dealing with complex fluids, such as amphiphilic
films, one always must be cautious in applying the pre-
dictions of simple-minded theories to real experimental
systems. Indeed, in the case of sponge phases, for exam-
ple, two important experimental facts are neglected by
our model. First, we have supposed that there is no
direct molecular interaction between fluctuating mem-
branes other than self-avoidance. This is, of course, not
the case, especially for charged amphiphiles. Second,
the sponge phases, as all other phases depicted in Fig. 1,
are binary (or higher order) mixtures of amphiphiles and
water. If one wants to study in detail the nature of phase
transitions appearing in such systems, one cannot neglect
a possible coupling between order parameters describing
the fluctuating surfaces (or edge defects) and the binary
mixture (density) order parameter.'®?® Such couplings
can modify, e.g., by “Fisher renormalization,” the con-
tinuous transitions described above.

However, these and other additional features of real
experimental systems can, in principle, be taken into ac-
count by extensions of our theory. One could then try to
connect directly the results of experiments in sponge
phases and some of the results presented here. Probably,
the easiest way to introduce edge defects into the pure
membrane systems is by changing the nature of the
aqueous solvent (e.g., its salinity'®), which in turn can
modify the interactions of the amphiphiles and introduce
a positive spontaneous curvature of each of the mono-
layers. This would result in lowering the free-energy
cost of edges or holes. The holes could also be stabilized
by introducing small amphiphilic impurities which can
accumulate at the edges and lower their effective line
tension. One can then study sponge phase transforma-
tions either through direct structural measurements
(e.g., freeze-fracture microscopy,?' light scattering, etc.)
or through thermodynamic (e.g., specific-heat, suscepti-
bility) experiments.

Although the detailed structure of the phase diagram
shown in Fig. 1 (which itself is based only on numerical
simulations'® and simple approximation schemes!'?)
could be modified through various additional effects
mentioned above, we hope that the rather appealing con-
nection between the thermodynamic behavior of sponge
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phases of membranes and gauge-Higgs theories, estab-
lished in this Letter, will further stimulate both experi-
mental and theoretical work on fluctuating membrane
systems.
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