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Collisionless m = 1 Tearing Mode
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The instability of a magnetically confined plasma against macroscopic modes is analyzed in collision-
less regimes where magnetic reconnection occurs because of finite electron inertia and the ion gyroradius
p; replaces the skin depth d as the width of the mode boundary layer. Growth rates
y/co& —(d/r, )(p;/d)'t' are found, with to& the Alfven frequency and r, the radius of the reconnecting
surface. For typical JET parameters, y

' —50-100 ps, which compares favorably with the observed in-
stability growth time of internal plasma relaxations.

PACS numbers: 52.35.Py, 52.50.6j

Internal relaxation oscillations of the central electron
temperature and soft-x-ray emissivity (so-called' "saw-
tooth oscillations") are a well-known instability in mag-
netically confined, axisymmetric toroidal plasmas where
the poloidal magnetic field 8& is produced by a toroidal
current carried by the plasma itself. The relaxation is
initiated by a helical mode with toroidal n =1 and dom-
inant poloidal m =1 wave numbers. This mode displaces
the equilibrium magnetic axis, where q (0) & 1, and
causes magnetic surfaces to reconnect around the region
where q(r, ) =1, which is also the region where the pitch
of the equilibrium field equals that of the perturbation.
Here, q(r) = rBv/RB, „with B~ the toroidal field, R the
torus major radius, and r the mean distance of a magnet-
ic surface from the magnetic axis.

Plasma discharges produced by the JET tokamak are
in a high-temperature regime where the electron-ion col-
lision time r„ is comparable to, and sometimes exceeds,
that of sawtooth relaxations (typical values are discussed
at the end of this Letter). In this regime, the rate at
which magnetic reconnection can occur is determined by
electron inertia and by the ion gyroradius, rather than by
collisional effects. This rate is found in this Letter to be
significantly larger than that of the well-known resistive
internal kink mode.

In a collisionless plasma, electron inertia can be re-
sponsible for the decoupling of the plasma motion from
that of the magnetic field, allowing magnetic-field line
reconnection. This possibility was first considered by
Furth, and analyzed in detail by Coppi, by Pellat, La-
val, and Vuillemin, and by Cross and Van Hoven,
within the context of magnetospheric and solar physics
as well as of laboratory plasmas, for modes with a nearly
constant perturbed radial magnetic field across the
reconnecting layer. Later, Basu and Coppi extended
the analysis to m =1 modes whose perturbed 8, general-
ly varies rapidly across the q=l surface. Near ideal
magnetohydrodynamic (MHD) marginal stability condi-
tions, their analysis led to an exponential growth rate y
in the linear instability stage given by
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V, xBE+ =gJ+
ee

a +V, V J-
8t

V. P,
ene

(2)
where V, is the electron fluid velocity, g is the electrical
resistivity, and P, is the electron pressure tensor. Even-
tually we are interested in the collisionless limit where
g 0. The resistive term is retained in order to make
contact with the collisional theory of Refs. 2 and 8.

Assuming a q profile such that 1 —
q )r/R in the cen-

tral region of the plasma column and finite magnetic
shear at the q=1 surface, we can use the ideal MHD
analysis of Ref. 9 to describe the plasma motion every-
where except in a layer around the q=l surface where
nonideal effects become important. Perturbed quantities
are assumed to vary as g(r, t) =g(r)exp[yt i+(& —p)],
with m&1 satellite poloidal components retained in the
MHD region but neglected in the layer. In order to treat
layer widths of the order of the ion gyroradius, it is con-
venient to use a generalized Fourier representation of the
mode amplitude, where k is the Fourier variable conju-
gate to the layer variable x =(r —r, )/r, . An extensive

where co& ——Vz/L, is the relevant Alfven frequency, with
V~ =B/(4am—;n;),'/, L, =R/s, s—=r,q'(r, ), and d= c/rot, „—
with to~, —= (4ttn, e /m, )„'/. The width 6 of the recon-
necting layer was found to be determined by the plasma
skin depth 6'-d. Their analysis adopted a kinetic treat-
ment for the electrons and a Auid description of the ions.
Therefore it was limited to values of the ion gyroradius
p;—= (T;m;c /e B ),' & d, corresponding to values of the
local ion beta, P; =(8ttn; T;/B )„&2m, /m;, that are un-

realistically low in most situations of interest.
In this Letter, we are interested in the modification of

the result (1) in the limit p;) d. Therefore, a kinetic
treatment for the ions that is valid for arbitrary ion
gyroradii is adopted, following the analysis of Pegoraro,
Porcelli, and Schep. Since we look for modes whose
growth rates are determined by a macroscopic process,
rather than by a selected number of particles in reso-
nance with the mode, a fluid treatment for the electrons
is adequate. The relevant Ohm law is
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treatment of this approach is given in Refs. 8 and 10,
where the perturbed ion and electron responses are de-
rived. Here, we focus on the modification of the electron
response resulting from the inertial term in Ohm's law.
The analysis is carried out in a frame of reference where
the equilibrium radial electric field at the q=1 surface
vanishes. The perturbed electron continuity equation is

6,/n, = —i (co„/y)y+ (I/y)dJ/dk,
where P=ecti/T, and J=Ji/en, V~ are the normalized
perturbed electrostatic potential and parallel current
density, respectively, y"'=—y/co~, co*, =co+,/cow, and co+,
=[(cT,/eBn, r)(dn, /dr)], is the electron drift frequen-
cy. The perturbed ion density is obtained from Vlasov's
equation and, for modes with parallel phase velocity
larger than the ion thermal velocity, is given by

n;/n; = [i (co„/y) L] zcti,—

with co~; = —co~, /z and z=(T, /T;)„. The function L
includes gyroradius effects to all orders,

L =i(co, ;/y)+ (1 —ro) i (co,—;/y)(1 —ri;M)rp,

with I o ~(b) =Io ~(b)exp( —b), M=b(1 —I ]/I p), Ip ]

being modified Bessel functions of the first kind,
b—:(pk), p= p;/r„and rl;——= (dlnT/d inn;), . The quasi-
neutrality condition gives yzL& = —dJ/dk. Ampere's
law takes the form J= zp k A, where A = (ev~/cT, )A

~~

is the normalized perturbed parallel vector potential.
The linearized Ohm's law depends on the perturbed elec-
tron temperature through the pressure term in Eq. (2).
For modes with y» k

~~ vih„where v tq, =T,/m, is the
electron thermal velocity, an adiabatic equation of state
applies,

T,/T, = —i r,i( co+, /y) p +( 2/3 y) dJ/dk,

where q, =(dlnT, /dlnn, )„. In the opposite limit y
«k~~vth„ the electron response is isothermal. In the
latter case, the electrons equalize their temperature
along perturbed field lines, leading to (d/dk)(T, /T, )
=g, m~, A. It can be shown a posteriori that, in the re-
gimes of interest here, the electron response within the
layer is adiabatic in the small-gyroradius limit, p; &d,
and mainly isothermal in the opposite limit, p; & d. In
both limits, Ohm's law can be reduced to '

[(d/p) ~(y+ v„/2) —(zp/y) d 2/dk ~]J =zgE,

where v„—=v«/co~, v« —= z,; ', p = 1 + 2a/3, g = 1 +i (co„/
y)(1+atI, ), with a=1 in the adiabatic limit and a =0
in the isothermal limit, and E = —dp/dk —yA is the
parallel electric field. We have used ri~~ =m, v„/2n, e for
the parallel resistivity. A term involving the gradient of
the parallel component of the equilibrium current densi-

ty has been neglected. After straightforward algebra
we obtain the dispersion equation

which reAects the global m=1 mode properties. The
first two contributions to (4) are related to the radially
constant part of the ideal MHD displacement in the re-
gion q & 1; in particular, the second term is related to
the ion inertia, with 6;„—= y(y" +icod() and cod; = cog; (1
+q;). The last term arises from the x ' correction to
the displacement approaching the singular layer from
outside. The MHD driving parameter Xn —(r, /R)
x (p~

—p~, „) is a measure of the potential energy that is
available outside the layer, with p~(r, ) the relevant po-
loidal P parameter and P~ „—0.1-0.3.

First, we consider briefly the small-gyroradius limit,
p; & 6. For the sake of simplicity, we assume that ~ —I

and co+,/y 0. For pk (( 1, we can approximate
L = (pk ) . Equation (3) reduces to

(d/dk)(k dJ/dk) —
y (5 +k )J=O,

whose exact analytic solution in terms of conAuent hy-
pergeometric functions is known. ' Using the bound-
ary condition (4), we obtain the dispersion relation

y=xH(-,' g)'"r(-,' (g —1))/r(-,' (g+s)), (s)

where Q=y/5 and I (z) is the gamma function. For
v„/y)) 1, this dispersion relation reduces to that of Ref.
2. In particular, near ideal MHD marginal stability, i.e.,

Eq. (S) yields (reintroducing dimensional
quantities)

y/cog ——(d/r, )(1+v„/2 y) 'i'.

The eigenfunction is J(k) = exp( —6 k 2/2). When
v«»y, Eq. (6) gives the well-known resistive internal
kink growth rate, y/co~ = e„'i, with e„—=d v„/2, the in-
verse magnetic Reynolds number. In the collisionless
limit, the mentioned result by Basu and Coppi in Eq.
(1) is recovered. The small-gyroradius condition,
p; & 6—d, also justifies the use of the electron adiabatic
equation of state. In fact, within the layer, x ~d, we
have (y/kiv, h, ) = (yd/px) z ')) l.

Interestingly, lesson'' has recently obtained a result
similar to that in Eq. (6), but following a different ap-
proach. Considering the convective inertial term, V, VJ,
in the generalized Ohm's law, and following a Sweet-
Parker' type of analysis, he has found a nonlinear
reconnection layer 6—d and a reconnection time
z—(r, /d)z~ in collisionless regimes, with z~ =co~ (the
same type of analysis leads to Kadomtsev's reconnection
time' z-z~e„' in the collisional limit). The term
V, VJ can become large nonlinearly because of current
sheets developing near the A point of the m=1 island,
enhancing the local value of dJ~~/dr.

where 6 —=d (1+v„/2y). The current density J must
vanish for ~k~ ~ so that the mode amplitude in x
space is regular. For small values of k, J must satisfy
the boundary condition '

J-I —(~' k'/2) + (~'&H lk I
'/»

~
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which is an interpolation formula between the fluid and
the large-gyroradius responses. Then, the differential
equation (3) can be solved by a double asymptotic
matching technique. We neglect, at first, diamagnetic
effects. We identify two overlapping intervals in k,
(hk) & 1 and (pk) & 1, corresponding in x space to an
inner sublayer of width 6;„„,„—d, where electron inertia
is important, nested into a broader layer of width 6' —p;.
An isothermal equation of state for the electrons is as-
sumed. For (Ak) & 1, Eq. (3) reduces to

(d/dk) [(p,'+ k ')d J/dk] —(y/k) 'J =0,
with p, =(1+r) '~ p, which can be solved exactly in
terms of a combination of hypergeometric functions of
—(p,k) with the constants of integration fixed by the

boundary condition (4). For (pk) & 1, Eq. (3) reduces
to

(1+.)d'J/dk' —(y/P)'(~'+k -')J=O.

The solution of this equation that behaves well at
i»=&(~lkl)'"1~.(~lkl), where ~=y&/p„

v = —, + (y/p, ), and K„,(z) is a modified Bessel function
of the second type. Matching the two solutions in the in-
terval p

' & k & a. ' determines the constant | and
leads to the eigenvalue condition. In particular, in the
relevant limit p, & j and v„& y, the eigenvalue condi-
tion reduces to

(~/2) y' =p,~H+ p,'~/y (7)

For lkH l
(p,' 6, we obtain the growth rate

' 2/3

y d Pi 3'0
(8)

lq d

with co = [2(1+r)/x] '~, which is higher than the growth
rate in (1). We refer to this as the collisionless m =1
tearing regime. Note that

3 ' 1/3
2me

2yp
" d mP;

vei

A modest enhancement of the growth rate (8), by a fac-
tor (1+v„/2y) '~, is found for v„& y.

For ~H & —p,' ~ ~, Eq. (7) yields y —p,A/label, so
that, for sufliciently large and negative k&, y drops below
v„and the (semi) collisional regime is recovered. In this
regime 8, is nearly constant across the layer, and the
m =1 mode is expected to become fully stable or to satu-
rate at a very modest amplitude. In the limit (p,d )'~
(XH (p„ the growth rate y —(XHp, ) '~ is obtained

from Eq. (7). These results, however, are valid as long

We now consider the more realistic limit p; & d and
v„~ y. Analytic progress can be made by adopting a
Pade approximation of the ion response function in
Fourier space,

' = (I+i~*;/y) ' +( I+ i~d/y) '(pk)

Ng e ] /3

flan(

$0 me

]/6 ' ' 2/3
P, I.,
2, I,

larger than unity, with L„—= ldlnn, /drl, diamagnetic
eA'ects fully stabilize the collisionless m = 1 tearing
mode. The Pade approximation for the ion response
function fails when y —co+; and g; becomes large. A re-
sidual growth rate is expected to persist when
g' + gI, Cr

We check the consistency of the obtained results with
the assumed model equations. Since in the collisionless
m =1 tearing regime, characterized by the inequalities
v„( yo, p; & d, lkHl (P,' 'd, and co+, ( yo, the bulk
of the electron population is involved in the instability
process, a fIuid, as opposed to kinetic, treatment of the
electrons is justified. The mode is localized in Fourier
space over a distance k & p, /yA =o '. In real space this
corresponds to values of x &Ay/p, where the isothermal
equation of state applies. In particular, the two asymp-
totic solutions of Eq. (3), one obtained for pk & 1 and
the other for dk & 1, can be matched entirely in the iso-
thermal domain (since d & a). Finite thermal conduc-
tivity alters the rate of decay of the eigenfunction at
large k o ', but the eigenvalue condition is not
afIected to leading order in the asymptotic parameter
d/p; « I.

Clearly, all difIerent aspects of the sawtooth relaxation
phenomenon cannot be explained by the linear analysis
presented here. Nevertheless, a comparison between our
results and experimental observations points to an impor-
tant role played by electron inertia for the plasma re-
gimes attained in recent JET experiments. This compar-
ison also suggests that the new time scale given by Eq.
(8) may indeed have been observed, even though a clear
confirmation must await a full nonlinear analysis taking
into account various factors such as the possibility of
low-shear q profiles in the central plasma region, of
enhanced dissipative efI'ects from microturbulence, neo-
classical MHD efI'ects, etc. In fact, two phases of the
sawtooth relaxation can be identified. ' The first phase,
lasting typically rd p] 100-300 ps, is characterized by
the displacement of the magnetic axis, exponentially
growing with time from its equilibrium position to a final
position rs„.,~

—(0.8 ~0.2)r;„„with r;„, the sawtooth in-
version radius. Thus it is possible to define an experi-
mental growth rate @empt typically, yexpt 3 7dI8pf. In the
second phase, the peak electron temperature drops on a
time scale rd;g —100-200 ps. Clearly, the linear stabili-
ty analysis cannot address this second phase. The two

as diamagnetic effects can be neglected. The diamagnet-
ic modification of the dispersion relation (8) can be easi-
ly evaluated. If lkHl (p,'

A ~, we find [cf. Eq. (18) of
Ref. 8 with XH =0 and E„yd ]

(y+lcoge)(y+lNg;) (y+lcod;) = yo .

Thus, for
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phases sometimes overlap.
Let us now evaluate the relevant stability parameters

for JET high-temperature discharges. We choose the
reference values R =3 m, B =3 T, n, (r, ) =3&&10' m

and T, (r, ) =5 keV. With Z, tr=2, we find r„=130 ps.
Thus v„ is 1 to 4 times smaller than y,„pt. The plasma
skin depth is d = 1 mm. Considering a deuterium plas-
ma with T; (r, ) = T, (r, ), the ion gyroradius is p; = 3

cm. Assuming a parabolic q profile with q0=0.7 and
r, =0.3 m, we find yo

' = 70 ps. Thus yo
' agrees

within a factor of 2 with the observed growth time, y; pt.

Finally, P, (r, ) =0.6% and, assuming L„—1 m, we have
co~,/yo ——0.36.

On the basis of Eq. (9), diamagnetic eA'ects will even-

tually prevail as the temperature is increased; however,
the condition for diamagnetic stabilization of the rn =1
mode is more stringent in the collisionless regime than
predicted by the two-fluid model. Thus, the main con-
clusion from the present analysis is that the m =1 tear-
ing instability can remain virulent at high temperatures,
contrary to expectations based on collisional models.
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