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The Cauchy Problem for the Scalar Wave Equation is Well Defined on a Class of Spacetimes
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We study the massless scalar wave equation on a class of asymptotically flat, static spacetimes with
closed timelike curves (CTC’s), in which all future-directed CTC’s traverse one end of a handle
(wormhole) and emerge from the other end at an earlier time. Existence of smooth, asymptotically reg-
ular solutions is proved for smooth data with finite energy given on J ~. The proof requires a generalized
spectral decomposition for a non-Hermitian operator. We also prove that this solution is unique among

solutions that die off in time.

PACS numbers: 04.20.Cv, 02.30.+g, 04.20.Jb

It has commonly been thought that in spacetimes with
closed timelike curves one cannot find consistent time
evolutions of classical fields for generic initial data— that
the Cauchy problem is not well defined. Recently, how-
ever, Morris and Thorne' introduced a class of wormhole
spacetimes in which, although there are many closed
timelike curves, the set of closed timelike and null geo-
desics has measure zero. For these spacetimes, Morris,
Thorne, and Yurtsever? noted that the evolution of free
fields is well defined in the limit of geometrical optics;
and this in turn makes it seem likely that a multiple-
scattering series converges to a solution for arbitrary ini-
tial data. '3

We consider here the simplest of the wormhole space-
times-of Ref. 3. These have a timelike Killing vector and
are constructed from Minkowski spacetime by removing
two timelike solid cylinders (the histories of the handles’

g

FIG. 1. A wormhole spacetime with closed timelike curves is
constructed by removing two cylinders from R* and identifying
their boundaries after a time translation. Points labeled by the
same numbers (indicating proper time along the wormhole) are
identified, as are points P, and P>. The identification maps the
outward normal A, to the inward normal —fi>.

mouths) and identifying the $2XR boundaries after a
time translation (Fig. 1). For these spacetimes, there is
no spacelike Cauchy surface, but initial data for the sca-
lar wave equation can be given at past null infinity J ~'.
Because the spacetime is static, a quantum test field
would have no particle production, and the existence of a
solution to the classical Cauchy problem implies a well-
defined solution to the free-field quantum scattering
problem as well.

In a Lorentzian path-integral approach to quantum

. gravity, any topology change— evolution from one (non-

empty) spatial three-manifold to one that is inequiv-
alent—requires closed timelike curves®* (CTC’s):
evaluating the path integral over metrics near one with
CTC’s is roughly equivalent to finding the quantum sca-
lar field on such a background spacetime. Even in the
approximation of classical gravity with quantum matter
fields, it is conceivable that physics allows one to con-
struct and maintain wormbholes; and if there is a well-
defined initial-value problem for a spacetime with
CTC’s, one might be able to create a spacetime with
macroscopic CTC’s in this way, by accelerating one end
of a wormhole.

The spacetimes of Refs. 2 and 3 are flat outside the
two identified cylinders, for ease of analyzing the geo-
desics. This simplification is not needed for our proof,
and we shall assume that the metric is smooth and static
(see Ref. 1). It does, however, simplify the asymptotic
analysis to assume that outside a compact region of some
large radius R the spacetime has a flat metric n,. Let
(t,x) be a natural chart of the flat metric 7., extended
to R* and let the removed cylinders having radius a,
centers at z=*d/2, and thus boundaries X, 4 =1,2
given by |x * 2d/2| =a. Here x is the three-vector asso-
ciated with the point (z,x), and we shall write r=|x]|,
f=x/|x|. Similarly, in describing Fourier components of
a scalar field ® we write k to denote a point of the
three-dimensional k space, k when the vector character
of k is explicitly used, and we set @ =|k|. The manifold
N is constructed by identifying the cylindrical boun-
daries according to a translation 7, given by t— t+1,
r— R +x+3Zd, where R+ is a rotation of X, yielding a
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nonorientable handle, and & - is a rotation-reflection of
¥, yielding an orientable handle. The metric, gg
= — 0,1 05t + hgp, is static, with timelike Killing vector
9, orthogonal to h,,. When 7 exceeds some 79, N has
CTC'’s that traverse the handle and are present at all
times. Although W has no spacelike hypersurface which
could play the role of a Cauchy surface, one can pose ini-
tial data at past null infinity, and our goal will be to
show that for all such data with finite energy, there is a
solution to the scalar wave equation on WN. A simple
heuristic argument based on geometrical optics is given
in Refs. 2 and 3.

Because the removed cylinders are timelike, null
infinity J is the Minkowski space J. In the null chart
(v=t+r,x), I~ has coordinates (v,f), and a solution ®
to the scalar wave equation on Minkowski space has as
initial data on J ~ the single function

y(v,f) = lim r®(v,rf) .

s oo
For our metric, the scalar wave equation has the form

(=97 +VH)o=0, ()
where V is the covariant derivative of the spatial metric
hap. It will be convenient to regard the spacetime as a
manifold with the boundary given by the two cylinders.
Continuity of @ and its normal derivative at identified
spacetime points P, =(¢,x), P,=(t+1,x,) is then ex-
pressed by the boundary conditions

®(P,) =d(P,) and iy VO(P,)=—1,-VO(P,), (2)

where i is the unit outward normal to the boundary X,
(or Z) xR (and ALD,).

Because the spacetime is static, a solution @ can be
expressed as a superposition of the form

o) = [ s(o,x)e " do, 3)
where ¢ (in general, a distribution) satisfies

o(w,x72) =e"p(w,x,) ,

ﬁ2~V¢(w,x2)=—ei”ﬁ‘-Vq)(w,xl) s @
with n=w7z. Finding solutions with harmonic time de-
pendence to the scalar wave equation on N is equivalent
to solving the elliptic equation

V+w?)¢=0, (5)

with boundary conditions (4), on a three-manifold
M=% — (the balls enclosed by Z4).

We can now state our main result.

Theorem.— Let y be smooth initial data on J =~ with
finite energy. Then there exists a solution @ to the scalar
wave equation which is smooth and asymptotically regu-
lar on WV and which has y as initial data.

This existence theorem will be proved by showing that
a spectral decomposition of the form

o) = [ EG,0le alk) +ea*(Old%,  (6)
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exists (w=|k|), where E (k,x) is the result of scattering
a plane wave, e'®' X off of the wormhole geometry. That
is, E(k,x) is the unique solution of the form elkx plus
purely outgoing waves. For fixed k, the function E (k,x)
is a solution on the spatial manifold /M to Eq. (5), with
boundary conditions (4). Because the boundary condi-
tions (2) involve a time translation, the corresponding
boundary conditions (4) depend on the frequency w.
Thus E(k,x), E(k',x) are, for |k|=|k'|, eigenfunctions
of different operators; they are not orthogonal and their
completeness is not guaranteed by the spectral theorem.
Our task is to show that the solution to the scalar wave
equation for arbitrary initial data on J ~ can neverthe-
less be constructed as a spectral integral of the form (6).

The proof is given as a series of lemmas. For bound-
ary conditions (4) specified by a fixed phase 17, we show
that the operator .£,: =V?+®? is self-adjoint on a dense
subspace of L,(/M) and that its eigenfunctions F(n,k,x)
(smooth solutions in a weighted L;) are complete and
orthonormal. This part of the proof is patterned on lec-
tures of Wilcox.?> The next step is a major departure
from standard scattering theory, because one must piece
together eigenfunctions corresponding to a phase 7 that
depends on @ in accordance with n=wz. That is, the
solution is of the form (6), where E(k,x)=F(
=tw,k,x). We show that Eq. (6) is in fact well defined
and gives a smooth solution to the scalar wave equation.
We then verify that the solution is asymptotically regular
and that it does have y as initial data on 7 ~. Finally we
prove uniqueness in a form somewhat weaker than we
would like, but as strong as is available for fields with
bounded source on Minkowski space.

We shall need several standard properties of Sobolev
spaces, including the Sobolev embedding and trace
theorems. These may be found in Reed and Simon.°
Denote by H; (M) the Sobolev space on M, so that for s
a positive integer, H;(/M) is the space of functions on /1
for which the function and its first s derivatives are
square integrable.

Lemma 1.— The operator V2 with boundary conditions
(4) is self-adjoint on L,(M) with domain H, where
Hy:=1{f € H,(M), satisfying Eq. (4) with fixed n}.

Proof of lemma 1.—First note that V? is symmetric
on the space of smooth functions satisfying the n bound-
ary conditions:

(y|V2p) =(Viy|p)+ U;_l+fzz ] (y*n-Vp)ds
=(V2ylg), @)
where the surface terms cancel by Egs. (4). The opera-
tor V2 on smooth functions in L;(R*) has a self-adjoint
extension with domain H,(%3) (Ref. 7). The only
difference here is that by imposing the n boundary condi-
tions on the domain of V2, one also imposes them on the
domain of the adjoint operator.
From lemma 1, the analogous result for .£, immedi-
ately follows as a corollary.
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_ Corollary.— L, is self-adjoint on L,(/#) with domain
H,.

We now characterize the eigenfunctions of ..

Lemma 2.—There is a unique solution, F(n,k,x), to
the equation .£,F =0, for which F=(2x) ~¥2e™ % plus
outgoing waves. The functions F(n,k,x) are complete
and orthonormal.

To prove existence, one first recasts the problem for
the existence of a solution to Eq. (5) as the existence of a
solution to an inhomogeneous equation, (V2+w?)e=p,
with p having compact support and ¢ purely outgoing.
To do this, let ¥(r) be a smooth steplike function of a ra-
dial coordinate r for which y(r)=0, r<=R; x(r)=1,
r= R+e¢, for some ¢>0. Write ¢ =x(27) ~%’* *+¢.
Then, if we set p=— (27) ~¥2e™* *(V2+2ik-V)y, p has
support (is nonvanishing) only in the annulus R —e¢
<r <R, and outside r =R, ¢ is the outgoing scattered
wave. Existence is now proved by adding a small imagi-
nary part to the frequency and taking the limit as the
imaginary part goes to zero. This “limiting absorption”
method selects the outgoing solution in the real-
frequency limit by the choice of sign for the imaginary
part of the frequency. The key to the proof is the fact
that, because L, is self-adjoint, .L,+i¢ is invertible in
L;. The proof of lemma 2 requires lemma 3.

Lemma 3.— Let A be a sequence of complex numbers
with positive imaginary part, such that A, — @2 Con-
sider a family {er,pi} of smooth functions on J#, where,
for each k, p; has compact support, and ¢y is the unique
asymptotically regular solution to the equation

(V2424 ))ex =py . (8)

If py — p in L,(M), then a subsequence ¢,, converges in
an H (M) norm to a smooth outgoing solution ¢ to
V2 +w)e=p.

Proof of lemma 3.—Let Mp=1{x € M, r <R}, with
R large enough to enclose the handle and the support of
{e}. Denote by Il ll; g the norm of H,(Mg). One first
shows that if llogll; g has a bound independent of k, then
by the Sobolev embedding theorem, a subsequence ¢,
converges in H,(Mg) to ¢ satisfying (V>+w?)¢=p on
Mg. Outside Mg, ¢, is given in terms of its values in-
side Mg (at R' < R) by

i) 2 x —y|

Pmlx)= dS ¢ (3)d], 1< 9)

lyl=r [x—yl

Then the Sobolev trace theorem and convergence of ¢,

in H1(Mg) imply that ¢,, converges pointwise to ¢ out-

side Mp. Because Im(A,,) 12 0, we have for r > R,
io|lx—yl

o dS el T (10)

e(x)= ,
[x—yl

lyl=

an outgoing solution.
This relied on the assumption that llggll, g was bound-
ed. If it is not, then the sequence @, =¥;/llwill> g has
both unit norm and a source gy =p/llei !l g whose norm

converges to zero. This easily leads to a contradiction:
1pxl— 0= 1I@llg. g — 0= P4 ll, g — O,

because 1@y “2,R = Cllgy HO‘R + “[51( Ilo.

Finally, to verify the second boundary condition, one
again uses convergence of ¢, in H; g to show that for
any ¢' in H g,

(Vo' | Vo) — 0 Xe'|e) — (¢'|p) =0.

Then the second boundary condition of Eq. (4) follows
from the first. Elliptic regularity implies smoothness.

Proof of lemma 2.—Existence of the solution
F(n,k,x) is an immediate consequence of lemma 3.
Uniqueness is automatic from Rellich’s theorem. The
orthonormality relations essentially express the fact that
L, is self-adjoint; an explicit proof of orthogonality,
needed because the eigenfunctions do not belong to L, is
given by Wilcox.”

Proof of theorem.— The proof shows that for a(k)
corresponding to smooth, asymptotically regular data for
Minkowski space, the right-hand side of Eq. (6) exists
and is both smooth and asymptotically regular. Al-
though, for different frequencies the functions Eg(k,x)
=F(n=wtan®, k, x) are not orthonormal, one can use
the orthonormality of F(n,k,x) for fixed n to bound an
integral norm of E¢(k,x). One integrates a norm of F
over all values of 1, and then rewrites the integral in
terms of 6, where n=wtan0: The fact that F itself is
norm preserving implies (after some algebra) the in-
equality

/28 lw"Eqk,y) 2
j;=0 dofdkdy (1+w2)n+6(1+y2)3/2+6 <C’ (11)

where

Eo(k,y) =fde9(k,x)

eix~y
(1+x2)32%e” a2
and where C is some positive real constant. From Eq.
(11) and smoothness of F in 6, it follows that for any n,

Ee(k,x)
Qa +x2)3/2+e

Then we have [dk a(k)Ey(k,x)e ~“' € C™ when the in-
itial data are smooth, because a (k) is a function of rapid
decrease.

Asymptotic regularity is proved as follows. Outside
r =R the spacetime is flat, and the field ® can be written
in the form, ®€+®°" the sum of the Minkowski space
solution with initial data y on J ~ and an outgoing solu-
tion. With y given by (13), y®°" is the outgoing solu-
tion to the flat-space wave equation with a smooth,
bounded source, whence it is regular at J¥; and self-
adjointness of .L,. implies that the data at 7 have
finite energy. The same argument with time reversed
implies regularity at J ~ with data for ® agreeing with
v. Finally, regularity at spatial infinity (finiteness of the

=L2‘,,+6(§R3)®H,,-—3/2—5(./n). (13)
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field’s energy on spacelike hypersurfaces outside the han-
dle) follows from an argument analogous to that leading
to Egs. (11) and (12) above, but with a bound on a
Fourier transform of E with respect to k and 7, instead
of x.

Because the field equation is linear, proving unique-
ness is equivalent to showing that ®=0 is the only
smooth solution with vanishing initial data at 7 —. Note
that uniqueness does not hold for distributional (i.e.,
weak) solutions to O®=0. That is, if ¢(1) is a null geo-
desic of the spacetime N, then ®=[dA8(x —c(A)) is a
solution in the distribution space H —,. There are null
geodesics that never hit J ~, but loop through the handle
an infinite number of times, and the corresponding distri-
butional solution has zero data on J ~. Our proof also
assumes that ® € L,(N); the condition on falloff in time
is stronger than one would like (it fails to rule out
smoothed versions of the looping null rays). The proof is
straightforward: Integrating the local equation V, T’
=0 (where T} is the stress-energy tensor of the scalar
field and #? is the timelike Killing vector field) over the
spacetime implies that incoming flux at J ~ is equal to
outgoing flux at J*, vanishing when there is zero data
on J~. Outside a spatially compact region D, the
metric is flat, and one can use the flat-space result for
each harmonic, that zero data on J* and I~ implies
®imo =0. Finally, a solution vanishing on the timelike
boundary 82 must vanish on D by Calderdn’s® timelike
uniqueness theorem.

The explicit eigenfunctions can be constructed itera-
tively as a multiple scattering series if the metric is
chosen to be exactly flat outside the removed cylinders.
A proof of convergence for wavelength longer than
V2era and a/d <1/2e and a numerical verification of
convergence for shorter wavelengths will be presented
elsewhere,® together with details of the work outlined
above.

In conclusion, we claim to have proved a surprising
result—a result that provides some foundation for the
suggestions of Ref. 3 that CTC’s may not be as nasty as
some have been inclined to think. Given the positive step
that this is, it is important to emphasize what we have
not done. First, our uniqueness proof is too weak to rule
out solutions that do not die off in time. It is likely that
the only such solutions are distributional, but this is a
conjecture, not a theorem. By restricting consideration
to a test field on a background spacetime, we avoid the
deeper question of consistency of a quantum or classical
spacetime in which CTC’s arise dynamically and in
which the topology is not trivial. In particular, it is not
yet clear whether the material stress tensor of a realistic
quantum field can keep a wormhole open. The creation
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of a time-tunnel spacetime from a causal wormhole
spacetime takes place across a Cauchy horizon. We
have not proved the stability of this horizon to classical
nonzero initial data given on a spacelike hypersurface
before it, although our result lends credence to the physi-
cal argument recounted in Ref. 3 that this Cauchy hor-
izon is, in fact, classically stable. For a quantum field,
the results of Kim and Thorne'® indicate that diver-
gences of the vacuum polarization are to be expected on
surfaces of closed-null crossing points in our spacetime.
However, it also seems that these divergences can be
small in the sense that, within a Planck length of the sur-
face of crossing-null geodesics, the vacuum polarization
stress tensor can be very much less than the Planck den-
sity. Left unexplored are the difficult problems of non-
linear, self-interacting fields, where the grandfather
paradox arises in a stronger form than it does here. First
steps at looking into the nonlinear problem have been
taken by Klinkhammer and Thorne'' and by Novikov. '?

We are indebted to Robert Geroch and Robert Wald
for several helpful conversations (during one of which
they led us to a more elegant uniqueness proof than we
had found), to Kip Thorne for helpful conversations and
correspondence, and to Rainer Picard for extensive
coaching. The work reported here was supported in part
by NSF Grant No. PHY 8603173.
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