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Monte Carlo Mean-Field Theory and Frustrated Systems in Two and Three Dimensions
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A new method, combining mean-field and Monte Carlo approaches, is applied to frustrated Ising sys-
tems in d=2 and 3, in zero and nonzero uniform fields. The method brings to mean-field theory the
hard-spin condition and uses much less sampling than the Monte Carlo simulation. The phase diagram
of the d=2 triangular antiferromagnet is easily obtained with remarkable global quantitative accuracy.
The phase diagram of the d=3 stacked triangular antiferromagnet shows three ordered phases, in a new
multicritical topology of lines of XY, Ising, and three-state Potts transitions, accessible to experiments
with layered magnets.

PACS numbers: 75.25.+z, 05.50.+q, 64.60.Cn, 75.50.Lk

The antiferromagnetic Ising model on the triangular
lattice is the simplest fully frustrated system and has
been shown ' to exhibit no ordering at temperatures
T&0 and a critical point at T=O. The three-dimen-
sional model formed by stacking such triangular antifer-
romagnetic Ising models is of interest due to experimen-
tal realizations and novel phases, ' partially ordered in

accommodating the entropy dictated by frustration.
The Landau-Ginzburg-Wilson (LGW) theory reveals

two possible ordered phases, (M, —M, O) and (M,
—M/2, —M/2) as labeled by the relative magnetiza-
tions of the three triangular sublattices. A Monte Carlo
simulation has indicated that, in d=3, these two phases
are consecutively encountered as the temperature is
lowered. However, the status of these phases and phase
transitions is far from resolved: (i) LGW theory ignores
the hard-spin condition, s; =1 at each site i, whereas
this condition is at the heart of the energy cancellation,
always present at microscopic localities, defining frustra-
tion. (ii) LGW theory is self-consistent only for small M
and thus can, at best, be suggestive for an explanation of
the change of ordering at low temperature. (iii) Cop-
persmith has raised the possibility that the ordering
does not saturate at T=O (i.e. , M ( 1). This needs fur-
ther exploration. (iv) Finally, renormalization-group
analysis has indicated that the transition from the disor-
dered phase, if not first order, should have the critical ex-
ponents of the d=3 XV model. However, recent Monte
Carlo simulations point to tricritical exponents.

Accordingly, we have developed a new method, merg-
ing mean-field theory and Monte Carlo sampling, that
addresses all of the above points and yields new informa-
tion, the finite-field phase diagram. This "Monte Carlo
mean-field theory" is of general applicability to statisti-
cal mechanics. It improves quantitatively the mean-field
solutions of general spin models, while using a substan-
tially smaller number of samplings than a conventional
Monte Carlo simulation. It brings the hard-spin condi-
tion to mean-field theory, and therefore is appropriate
for problems involving frustration. Indeed, we demon-
strate here that the method correctly distinguishes the

different consequences of frustration in different dimen-
sions (giving, at zero fields, no T & 0 phase transition in
d =2 and actual T & 0 phase transitions in d =3, for the
frustrated triangular systems here). As such, the
method is a qualitative improvement in the self-con-
sistent treatment of frustrated systems.

For an Ising spin system with nearest-neighbor in-
teractions, p& =Jg~;~&s;sI, where s; = + 1 at each site i
of the lattice and (ij) indicates summation over all
nearest-neighbor pairs of sites, the conventional mean-
field equations for individual spins are

(s;) =tanh(H;),

with the effective field H; = —Jg~(sj), where the sum-
mation is over sites j nearest neighbor to site i. For
triangular-lattice (d=2) antiferromagnets, J & 0, these
individual equations have the solution (s;), = —(sj)b
=M, (sk), =0, and all permutations, where (a, b, c)
denote the three sublattices. The free energy is in fact
minimized by this solution of the set of the coupled indi-
vidual equations, with M becoming nonzero via a
second-order phase transition at temperature T—=J
=3, clearly violating the exact result' of no phase transi-
tion for J & ~ in d=2.

Any statistical mechanical treatment of these frustrat-
ed systems that predicts ordering in d =3, to be seriously
taken, must conversely yield no ordering in d=2. As
seen above, conventional mean-field theory fails this cri-
terion. The reason is that in the actual system, the spin
s;, the thermal average of which is evaluated in Eq. (1),
never actually feels the field 0; constructed with the
average values of the nearest-neighbor spins. These
spins s~ always have unit magnitude and it is their sum
that enters the actual field on s;,

(2)

For antiferromagnetic local correlations, 0; can be
strictly zero no matter how large J is, so that s; would be
disordered. Many such frustrated local configurations
are lost in conventional mean-field theory (for example,
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FIG. 1. Phase diagrams: (a) the d =2 triangular antiferro-
magnetic Ising model. The open circles and solid curves are
Monte Carlo mean-field theory, using up to 24x 24 spins and
50-300 MCS after discarding 150-300 MCS. The entire
T & 0 phase boundary is second order. The solid circles are the
conventional Monte Carlo simulation results with 99X99 spins
and 2000 MCS after discarding 50 MCS [Ref. 7(a)]. The dot-

ted curves are renormalization-group results [Ref. 7(b)]. (b)
The d=3 stacked-triangular antiferromagnetic Ising model.
The open circles and solid (second-order phase boundary) and

dashed (first-order) curves are Monte Carlo mean-field theory,
using up to 24x24X6 spins and 50-500 MCS after discarding
100-550 MCS. Given in parentheses are the numbers of coex-
isting phases. Insets: Possible structures at the multicritical
region M; (left) a tricritical point T with a critical end point E,
or (right) a bicritical point B Outside th. e crossover boun-

daries (shown schematically by the dash-dotted curves), tricrit-
ical or bicritical exponents will be observed.

when M=0 is assigned to one sublattice).
We have introduced the Monte Carlo mean-field

theory in order to satisfy this basic requirement. The
thermal average of each spin s; is calculated individually,

by Eq. (1), in its nearest-neighbor field H; given by Eq.
(2). The nearest-neighbor field is constructed, as
specified in Eq. (2), with unit-length spins s~

= ~ 1, the
sign of which is determined by stochastic sampling,

namely, by the sign of (sj) r—, where r is a random num-
ber in the interval [—1, 1].

Systems with periodic boundary conditions with sizes
up to 24 x 24 and 24 x 24 x 6 were used. The results were
insensitive to sequential or parallel updating where, re-
spectively, a randomly chosen spin is updated one at a
time or all the spins are updated simultaneously. The
former was adopted for computational efficiency. The
self-consistency in Eqs. (1) and (2) was typically
achieved after 50 samplings per spin (MCS), up to noise
due to the random number entering our procedure.
Values then needed averaging typically over 100 MCS.

Our calculated phase diagram is given in Fig. 1(a) for
the d =2 triangular Ising antiferromagnet, also including
the possibility of a uniform external field H so that Eq.
(2) is supplemented as H; = —Jg~s~+H. Previous re-
sults, from a Monte Carlo simulation ' and renormali-
zation-group calculations, are also shown. It is seen
that the Monte Carlo mean-field approach yields the
zero-temperature phase transition of H=0 and, over the
entire phase diagram, excellent agreement with the. pre-
vious works. Figure 2(a) shows one of the constant-
temperature scans used in determining the phase dia-
gram. No hysteresis was observed. The transitions ap-
pear to be second order (and are known to be so).

The d=3 stacked-triangular antiferromagnetic Ising
model in a field has the Hamiltonian

P'P =Jgs;sj —J'g s;s~ Hgs;, —
&ij) &ij) i

where J,J' & 0, the first and second sums are over
nearest-neighbor pairs in the x-y planes and along the z
direction, respectively. This system is fully frustrated in
the x-y planes, but with no competing interactions a]on~
the z direction. An energy-versus-entropy argument
indicates that long-range order should occur at T & 0.
Monte Carlo mean-field theory is done with H;= —Jg~s~+ J'gj's~+H; Results for J'=J will be re-
ported here.
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FIG. 2. Monte Carlo mean-field scans: (a) With 24x24 spins and 100 MCS after discarding 200 MCS. (b) With 24x24x6
spins, 100 MCS after discarding 200 MCS (central and left panels), and 200 MCS after discarding 400 MCS (right panel). The
right panel is the superposition of two scans in opposite directions, and shows hysteresis, signaling a first-order transition.
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Our calculated phase diagram for this d=3 system is
shown in Fig. 1(b). First, we discuss the H=O line.
Two different ordered phases occur, as seen from the
sublattice magnetization data in Fig. 3(a). The inter-
mediate-temperature ordered phase has sublattice mag-
netizations (M, —M, O). This phase is sixfold degen-
erate, as obtained from the sublattice permutations.
Note in Fig. 3(a) switching between the degenerate
phases (e, at J ' = 2). This switching has been
explained by renormalization-group trajectories
which, in a finite system, stop before reaching asymptotic
limits. The fact that, here, switching is seen at the
higher temperatures supports this previous argument.
The low-temperature ordered phase has sublattice mag-
netizations [M„Mb, —(M, +Mb)], with Mb =M„also
sixfold degenerate if the equality holds. This phase ki-
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FIG. 3. (a) Sublattice magnetizations by Monte Carlo
mean-field theory with 0=0, using 24& 24 &6 spins and 500
MCS after discarding 100 MCS. The dashed line indicates the
surmised first-order transition between the ordered phases,
affected by nearby tricritical points. (b) Specific heat by
Monte Carlo mean-field theory (squares) with H=O, using
24X 24&6 spins and 500 MCS after discarding 200 MCS. The
lines indicate the phase transitions deduced from the sublattice
magnetizations in (a). The circles are the conventional Monte
Carlo simulation results with 15&&15X12 spins and 1500-2500
MCS after discarding 300-500 MCS [Ref. 4(a)l.

netically freezes when the chains along the z direction
freeze predictably at J ' —2/In(N, N, ), where N, is the
MCS number and N, is the number of spins along z.
The histograms at the left of Fig. 3(a) show the sublat-
tice magnetizations at freezing for twenty separate cal-
culations. Thus, the possibility of unsaturated magneti-
zation (M„Mb ~ 2, M, & 1) remains open. The upper
phase transition occurs at temperature J ' = 3.3, some-
what higher than the extensive Monte Carlo " transi-
tion temperature of J ' = 3.0, but considerably less
than the conventional-mean-field transition temperature
of J ' =5. This is because Monte Carlo mean-field
theory properly accounts for the bonds violated due to
frustration. The upper phase transition in Fig. 3(a) is
clearly second order and should be in the XYuniversali-
ty class. We tentatively interpret the lower phase transi-
tion in Fig. 3(a) as first order (while another possibility
is a narrow transition region between the two ordered
phases, which would constitute yet another ordered
phase). Figure 3(b) shows the H=O specific heat, calcu-
lated from C=k((P& —(P&)) ) by Monte Carlo
mean-field theory, with 24X24X6 spins and 500 MCS
after discarding 200 MCS. Also shown are the results of
the conventional Monte Carlo simulation, ' with
15X15X12 spins and 1500-2500 MCS after discarding
300-500 MCS. Agreement is satisfactory.

The intermediate-temperature ordered phase (M,
—M, O) smoothly continues from H =0 to H &0, for ex-
ample, as (0 & M„Mb & —M„O & M, & M, ) for H
&0. Conclusions of previous LGW and (a=4 —d ex-
pansion) renormalization-group theory extend to the
boundary between this phase and the high-temperature
disordered phase (M, =Mb =M, ), indicating the A Y
universality class. As H is increased, the (sixfold-
degenerate) intermediate-temperature phase undergoes a
second-order transition, as seen in Fig. 2(b), to the
threefold-degenerate (0 & M„MbAM„M, =M, ) phase.
Thus, this phase transition involves the breaking of the
M, =M, symmetry (as H is lowered) and therefore is in
the Ising universality class. Based on our tentative
identification as first order of the low-temperature H=O
phase transition, this HWO Ising transition line should be
converted from second order to first order by a tricritical
point, located close to H=O in order to give the Auctua-
tions observed at the low-temperature H=O transition in

Fig. 3(a). The (0 & M„Mb eM„M, =M, ) phase joins
along the low-temperature segment of H=O with its
H & 0 counterpart (M, & O, Mb AM„M, =M, ). This
segment is thus a first-order phase boundary with sixfold
coexistence, in agreement with the H =0 discussion
above.

Figure 2(b) shows a constant-temperature scan in
d=3. The high-field transition is first order, as seen
from the hysteresis shown in the detailed right panel.
This is as expected, since it involves the breaking of the
M, =Mb =M, symmetry, thereby being in the three-
state Potts universality class. [In Fig. 1(a), the entire

379



VOLUME 66, NUMBER 3 PHYSICAL REVIEW LETTERS 21 JANUARY 1991

T & 0 phase boundary is in the three-state Potts univer-

sality class, which exhibits a second-order transition in

d =2 but not in d =3.] This suggests that the intersection
M of the phase boundaries is either a bicritical point or a
tricritical-point, critical-end-point combination [Fig.
1(b), insets]. By general renormalization-group theory,
phase boundaries and crossover boundaries join at a mul-

ticritical point along the same direction corresponding to
the smallest relevant scaling exponent. Furthermore, by
analyticity of the phase boundary (i.e., analyticity along
an irrelevant direction) and by up-down symmetry, both
of these boundaries are perpendicular to the H=O line.
Thus, the expected crossover lines are as shown in Fig.
1(b), insets. Accordingly, the proximity of this mul-

ticritical region to H=O explains the exponents in recent
Monte Carlo simulations: The XY exponents ~'

(v= —', , a (0, P = —,', and y = —', ) should be observable

only inside the narrow region bounded by the crossover
lines, whereas multicritical exponents are to be observed
outside the crossover lines. A bicritical point corre-
sponds to crossing a Heisenberg critical point along the
anisotropy field direction, ' so that combining the
Heisenber~ exponents t ) with the anisotropy crossover
exponent "

p = 1.25 gives v = 0.57, tt = 0.29, P =0.29,
and y = 1.12. A tricritical point has v = —,', e = —,',
P= —,', and y= l. The latter exponents appear somewhat
more consistent with the measured values of v=0.47,
a =0.5+'0. 1 P =0.19+'0.1 and y=1.15+'0.05. These
authors have also explained their data by the proximity
of a tricritical point, but by extending the phase diagram
toward an ordered phase which is entirely diff'erent from
ours and not accessible to experiment.

The stacked triangular system is a possible model for
magnetic halides. The H =0 orderings appear consistent
with experiments on CsCoBr3 [Ref. 2(a)], CsCoC13 [Ref.
2(b)], and VC12, VBrq, Vlq [Ref. 2(c)]. The present
work indicates a new multicritical phase diagram at
H&0. This should be accessible to experiments, by ap-

plication of an external field to previously studied ma-
terials. Furthermore, in samples with a threshold
amount of random bonds due to doping or quenched va-
cancies, the d =3 three-state Potts transitions would
show novel tricritical and critical phenomena. '
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