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Orbital Diamagnetism of Two-Dimensional Electrons
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DiAerent direct perturbation theories show that the Peierls substitution leads to quantitative and qual-
itative errors in calculations of the energy diA'erence with and without magnetic field for both nearly free
and tight-binding two-dimensional electrons. The sources of these errors are clarified. The lowering of
the electron kinetic energy in a magnetic field is shown to be in general an artifact of the Peierls substi-
tution. Spontaneous orbital ferromagnetism is shown to be impossible. Credibility of the usual theory of
Landau diamagnetism for two dimensions is reestablished.

PACS numbers: 74.65.+n, 75.20.—g

or

The so-called "Peierls substitution, "'

e(k) e( —i V —eA),

f rn

t(m —m') t(m —m')exp ie A(r)dr

is usually adopted for a slowly varying magnetic field A
in the vicinity of the bottom or top of an energy band
e(k). Here t is a hopping integral.

Hasegawa, Lederer, Rice, and Wiegmann, through
the substitution Eq. (1), claim that the energy of two-
dimensional noninteracting spinless electrons on a lattice
has an absolute minimum when the Aux per plaquette, p
(in units hc/e), exactly equals the electron density v per
cell. They also claim "the failure in this case of the usu-
al theory of Landau diamagnetism. " This has been con-
formed by other workers, using the same substitution.
In particular, Abanov and Khveshchenko, using the
Peierls substitution in the nearly-free-electron limit, ob-
tain a negative energy diA'erence hE, with p=v and
without a magnetic field, proportional to v, thus
confirming that "the system of two-dimensional lattice
fermions has a tendency toward a spontaneous genera-
tion of orbital currents. "

However, the Peierls substitution is a rather uncon-
trolled approximation, so that the reliability of these re-
sults remains in doubt. Moreover, Nicopoulos and Trug-

man using second-order perturbation theory in a crystal
field showed that for many weak potentials the lowest-
energy state is in fact at zero magnetic field.

In this Letter we calculate the total energy of two-
dimensional electrons in a magnetic field with the Peierls
substitution and compare this with direct perturbation
theories: First, we discuss nearly free electrons for the
whole region of concentration; second, we treat the
tight-binding limit. We clarify the limits of the Peierls
substitution. For nearly free electrons we show that the
Peierls substitution is an asymptotic approximation,
which leads to serious errors in the energy diA'erence

both in the low-concentration limit and in the high-
concentration one. We show that the kinetic energy with
a magnetic field is higher than without it, both at low

and at high concentrations. For a strong periodic poten-
tial such that the tight-binding limit may be used, we
generalize the Peierls approach, ' taking into account the
diamagnetic atomic shift and the dependence of the
value of the hopping integral, Eq. (1), on the magnetic
field. Using an exact solution for a model crystal field
we show that a strong magnetic field shifts the atomic
level and diminishes the hopping integral, increasing the
total energy. We underline that the usual theory of the
orbital diamagnetism, based on the existence of uncom-
pensated surface diamagnetic currents, is also credible
for two-dimensional electrons.

The energy spectrum of the nth Landau subband for
nearly free electrons is given by

det (e e„)St t,
——(nk') V~ nk) — g (nk'~ V~ n'k")(n'k"

~
V~ nk)/co(n —n') =0,

k",n'&n
(2)

where ~nk) is an unperturbed wave function in the Landau gauge A=(O, Hx, O), k is the y component of the wave vec-
tor, co=eH/m, and et =co(n+ —,

' ) denotes a Landau level, which is pN-fold degenerate, with N the number of unit
cells. A first-order splitting of Landau levels exists due to degeneracy. Moreover, the Fourier components v(g) of the
crystal field V(r) do not act independently in a magnetic field. For example, using Eq. (2) one can obtain for the one-
particle ground-state energy

eo(k) =co/2+2vexp( —tc/2p)cos(ak/p)

—(2v /co) exp( —tr/p) jEi(tc/p) —ln(tt/p) —C+ [Ei(—tc/p) —ln(tt/p) —C]cos(2ak/p) j . (2')

From this expression one can see that for a totally filled lowest Landau level (p = v) the first-order correction and the
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inter ference term of diferent Fourier components in the second order do not contribute to the total energy:

E(H) E— (0) = —(mNa v //r)exp( —/r/v) [Ei(/r/v) —ln(/r/v) —C], (3)

w here E (0) =/rv N/ma is the energy of free elec-
trons in zero field, Ei(x) is the integral exponent,
C=0.577216, and the simplest form

V(r) =2v cos(2/rx/a) (4)

is assumed, which has zero matrix elements between
diferent degenerate states, with a the lattice constant,
and h =C=1.

Thus, the total energy has a power-series expansion in
v with the leading term second order in v, and diAerent
Fourier components act independently in leading order
for a filled lowest Landau level, or for any integer num-
ber of filled Landau levels.

Equation (3) was obtained in a slightly diff'erent form
by Nicopoulos and Trugman. In the low-density limit,
v«1, which is the same as the short-wavelength limit
since one Landau level is always filled, one can use the
asymptotic representation of Ei(x):'

E (H) E(0)—
N*

= —(mNa'v'//r) g (n —1)!(v//r)" +RJv.
n=l

(5)
in the sense that the correction R~* is small, ''

the second term, with the following result:

E (H) —E (0)
= —(mNa v //r)(v/2) '/ Imw((/r/2v) ' ),

(10)
where w(z) =exp( —z ) [1 —erf( —iz)] is an error func-
tion. ' For v« 1 the Peierls substitution gives

E (H) E'(0—)
2 2

' n

—+ g (2n —3)!! — +R/'v*
R' K pal=2 R

which diff'ers from the exact expression, Eq. (5), starting
from the term proportional to v (see also Ref. 6). Thus

J/

m A'g'y'

o.5

R * & (/r/2N *) '/ N*!(v//r) (6)

For zero field one can integrate the second-order one-
particle spectrum

s(k) =k /2m —mZ I v(g) I
'/(k g+g'/2) (7)

5,0

up to k & kF, where kF is the Fermi wave vector, or use
the expression for the static dielectric constant of two-
dimensional free electrons ' to obtain

E(0) E' '(0)—
= —(mNa v /2/r) [1 —e(/r/4v —1)(1—4v/7r) ' )],

or, at v & /r/4,

E(0) —E "'(0)

= —(mNa'v'/zr) g (v/x) "(2n —2)!/n! (n —1)!.
n=l

(8)
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Thus one can see from Eqs. (5) and (8) that at v«1
both energies coincide up to the fourth power of concen-
tration:

AE =E(H) —E(0) = —(mNa v /n)v //r

To obtain the second-order energy E (H) with the
Peierls substitution one has to change k in Eq. (7) into
—iV —eA and calculate the diagonal matrix element of

FIG. 1. Solid line: energy diff'erence with (p = v) and
without the magnetic field (the diff'erence between the solid
and dotted curves in Ref. 9); dashed line: the same energy
diAerence, calculated with the "Peierls substitution. " Inset:
The relative error of the "Peierls substitution" at low concen-
trations v.
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the Peierls substitution overestimates the energy diAer-
ence hE even in the region of low concentration, where it
is usually assumed to be a good approximation. The rel-
ative error 6(v) of the Peierls substitution for hE is
divergent at small v:

with H=( —iV —eA) /2m and 8 0. One might try to
expand the resolvent (e„H—) ' in powers of the fluc-
tuations of H. This expansion runs into problems, how-
ever, if matrix elements of V exist to states with e„. Ig-
noring this problem and simply substituting

a(v) =(~E' ~E)—I/~E =~/v- (i2) (8, —H+ lb)'

At large v, the Peierls substitution, Eq. (10), gives the
wrong sign of hE. For nearly free electrons the Peierls
substitution turns out to be qualitatively (Fig. 1) and
quantitatively (Fig. 1, inset) wrong.

To clarify the nature of the error we write the second-
order correction in the form

((H) (p) .~)
—( g (H —(H) )

(p)) n '

(i4)
where (H) =rp(n+ —,

' ) +g /2m is the energy in the state

=Re(nkI V(e„H+ib)—'VInk), Ig) =exp(ig r) Ink),(i3)
one obtains a second-order energy correction e

e„=—mRe QIy(g)I (nkI[g /2+g. ( —iV —eA)] 'Ink)

+ g v(g)v(g')*(nkIexp[i(g —g'). r][g /2+g ( —iV —eA)] 'Ink) (15)

where g =
2 Hxm-r and yo is the atomic orbital for

m =0 in a magnetic field, for which we now use the sym-
metric gauge A= 2 Hxr. Replacing the atomic pseudo-
potential V(r) by a harmonic-oscillator form,

with coo the atomic level in zero field, one obtains from
the Schrodinger equation(gl [2m(H —(H))/g'] "Ig) & 1,

which diAers from the correct e . The first term in Eq.
(15) is the second-order energy with the Peierls substitu- through a simple gauge transformation as
tion and the second one is the interference of different
Fourier components of a periodic potential, which does
not contribute to the total energy in case of a filled Lan-
dau level. From this analysis it becomes clear that the
Peierls substitution does not treat the problem correctly,
which arises because of degeneracy. Furthermore, it
uses an asymptotic expansion of the resolvent Eq. (14),

2J 2 2%iwhich makes some sense only in the region of small fluc- Vyrg =memoir +y gy'

tuations:

which is the same as

v/z & 1.
For large flux p/x) 1, the Peierls substitution is mean-
ingless.

At a low concentration, the correct energy diA'erence
dE, being negative, has an extremely low value, Eq. (9).
Thus, any correction which varies with concentration
slower than v will be dominant in this region. That is
the case for a three-dimensional correction, which for a
one-particle spectrum,

e(k) =k ~~ /2m+ 2t & [1 —cos (k &a & )],
gives a positive energy diA'erence that is concentration
independent (see, for details, Ref. 13):

AE3 =E3 (H) E(0)=3mNa —t /2tt

where t~ and a& are the interplane hopping integral and
the interplane distance, correspondingly. The superscript
(0) means that electrons are free in the plane.

In the case of tight-binding electrons the atomic wave
function at site I in a magnetic field can be expressed

[—5/2m —(e/m)H. L+e 2 /2m+ V(r)]yp =e(H)yp,

e(H) =(p) +p)'/4)' '

itfp(r) =exp[ —(x'+y')/2k'j/X Jz, (i9)

t = exp [i (e/2) [H x (m —m') . r]

x yp(r —m) Vyp(r —m')dr

=g v(g)expfig, a/2 —g'X'/4
8

—(gy+ try /a ) 'X'/4 —a '/4X'] . (20)

One can see from Eq. (20) that a strong magnetic field

where ) =a + (4XH ), ap is the radius of the
atomic orbital in zero field, kH =2trp/a, and L is the
orbital angular momentum. The diamagnetic shift of the
atomic level, Eq. (18), dominates, as was mentioned by
Nicopoulos and Trugman. Here, using the exact model
solution, Eq. (19), we show that the reduction of the
hopping integral will also raise the kinetic energy. With
Eq. (19) one finds for the nearest neighbors m' —m„
=a m' —m =0

y y
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indeed gives exponential reduction of the hopping in-

tegral due to localization of atomic orbitals, Eq. (19).
For the simple form of V(r), Eq. (4), we obtain

t/t =exp( —3aotr'v '/8a')

for try (a /ao, and

t/t =exp( —try/2)

(21)

(22)

for try& a /ao.
In conclusion, we have shown that the kinetic energy

of electrons in a magnetic field is higher than without a
field, both for nearly free two-dimensional electrons in a
wide range of their concentration and for tight-binding
electrons. Even if in some narrow region of concentra-
tion (Fig. 1) d,E is negative, this fact does not mean the
violation of the Landau theory of orbital diamagnetism,
which assumes that electrons are diamagnetic in the lim-
it 0 0. Both perturbation theory and the Peierls sub-
stitution give positive h,E in this limit. The magnetic
susceptibility in finite fields is a diff'erential oscillating
characteristic, which does not depend on the value or the
sign of the total energy.

We point out that the Peierls substitution does not
adequately describe the total energy with a magnetic
field either in the nearly-free-electron case or in the
tight-binding one.

Our conclusions have an indirect bearing on the oc-
currence of flux phases, proposed by Kalmeyer and
Laughlin. ' There, the ground-state wave function in

Eq. (1) is used as a trial wave function, the field in Eq.
(1) being fictitious and having no self-energy (H /8tr of
a real field for p = v would be a factor of 10 higher than
the electron energy). On the other hand, the claimed

"lowering of the kinetic energy in a real field" has been
used as support for the occurrence of these flux
phases. Our results show that this argument is
unjustified, being an artifact of the Peierls substitution
outside its range of validity.
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